dq-ai-module


Namedq-ai-module JSON
Version 1.1.0 PyPI version JSON
download
home_page
SummaryCreate data quality rules and apply them to datasets.
upload_time2023-05-31 06:01:02
maintainer
docs_urlNone
authorHimanshu
requires_python>=3.8
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # DQAI (Data Quality Artificial Intelligence)

This code provides a Python class called `DQAI` that utilizes the OpenAI Chat API to analyze a dataset and generate data quality rules specific to the data.

## Usage

1. Install the necessary dependencies.
2. Set up your OpenAI API key or use the provided default key.
3. Prepare your dataset in a suitable format (e.g., CSV).
4. Instantiate the `DQAI` class.
5. Invoke the `invoke_from_dataset` method, passing the dataset as input.
6. The code will generate Python code based on the dataset and execute it.
7. The generated rules and the results will be saved in the current directory as "generated_code.py" and "rulesapplication.csv," respectively.
8. The generated rules can be obtained by calling the `_get_rules_from_file` method.


## Example:

    import pandas as pd
    from dqai import DQAI

# Read the dataset from a CSV file
    path = "path/to/your/dataset.csv"
    data = pd.read_csv(path)

# Instantiate DQAI and generate data quality rules
    key = OPEN_AI_KEY
    dqai = DQAI(key)
    result = dqai.invoke_from_dataset(data)

# Access the generated rules and results
    rules = result["0"]
    results_df = result["1"]

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "dq-ai-module",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "",
    "author": "Himanshu",
    "author_email": "himanshu.tomar@decisionpoint.in",
    "download_url": "https://files.pythonhosted.org/packages/86/02/b1762f2adc1c83f2f429511e85f7ce96b748cdd584c801997bc7cd90eaf6/dq_ai_module-1.1.0.tar.gz",
    "platform": null,
    "description": "# DQAI (Data Quality Artificial Intelligence)\r\n\r\nThis code provides a Python class called `DQAI` that utilizes the OpenAI Chat API to analyze a dataset and generate data quality rules specific to the data.\r\n\r\n## Usage\r\n\r\n1. Install the necessary dependencies.\r\n2. Set up your OpenAI API key or use the provided default key.\r\n3. Prepare your dataset in a suitable format (e.g., CSV).\r\n4. Instantiate the `DQAI` class.\r\n5. Invoke the `invoke_from_dataset` method, passing the dataset as input.\r\n6. The code will generate Python code based on the dataset and execute it.\r\n7. The generated rules and the results will be saved in the current directory as \"generated_code.py\" and \"rulesapplication.csv,\" respectively.\r\n8. The generated rules can be obtained by calling the `_get_rules_from_file` method.\r\n\r\n\r\n## Example:\r\n\r\n    import pandas as pd\r\n    from dqai import DQAI\r\n\r\n# Read the dataset from a CSV file\r\n    path = \"path/to/your/dataset.csv\"\r\n    data = pd.read_csv(path)\r\n\r\n# Instantiate DQAI and generate data quality rules\r\n    key = OPEN_AI_KEY\r\n    dqai = DQAI(key)\r\n    result = dqai.invoke_from_dataset(data)\r\n\r\n# Access the generated rules and results\r\n    rules = result[\"0\"]\r\n    results_df = result[\"1\"]\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Create data quality rules and apply them to datasets.",
    "version": "1.1.0",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "92a976f32f45d99caffdaf1b6d942461224588f67f0f3ecc838af78286dc97d0",
                "md5": "d35a9b01fcf7b9ac8a218363230aa085",
                "sha256": "82356958e33afef93cbd8eaf2d6d79eb81820d94113f409325997cfcc4b4ff6c"
            },
            "downloads": -1,
            "filename": "dq_ai_module-1.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d35a9b01fcf7b9ac8a218363230aa085",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 3148,
            "upload_time": "2023-05-31T06:01:00",
            "upload_time_iso_8601": "2023-05-31T06:01:00.167555Z",
            "url": "https://files.pythonhosted.org/packages/92/a9/76f32f45d99caffdaf1b6d942461224588f67f0f3ecc838af78286dc97d0/dq_ai_module-1.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8602b1762f2adc1c83f2f429511e85f7ce96b748cdd584c801997bc7cd90eaf6",
                "md5": "daf873651ab7a095df03a8c63b00821c",
                "sha256": "6b834ce9ca211adae6370e9150888d282a559165f5bad13f4e9e6c12f591b97a"
            },
            "downloads": -1,
            "filename": "dq_ai_module-1.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "daf873651ab7a095df03a8c63b00821c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 2957,
            "upload_time": "2023-05-31T06:01:02",
            "upload_time_iso_8601": "2023-05-31T06:01:02.153996Z",
            "url": "https://files.pythonhosted.org/packages/86/02/b1762f2adc1c83f2f429511e85f7ce96b748cdd584c801997bc7cd90eaf6/dq_ai_module-1.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-31 06:01:02",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "dq-ai-module"
}
        
Elapsed time: 0.18746s