StableDiffusionInpaintingFineTune
=================================
This project provides a toolkit for fine-tuning the Stable Diffusion model for inpainting tasks (image restoration based on a mask) using PyTorch and Hugging Face Diffusers libraries.
Requirements
------------
Before starting, you need to install the following libraries:
.. code-block:: python
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
- ``torch``
- ``diffusers``
- ``transformers``
- ``accelerate``
- ``huggingface_hub``
- ``PIL``
- ``numpy``
- ``tqdm``
Description
-----------
StableDiffusionInpaintingFineTune
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This class is responsible for fine-tuning the Stable Diffusion model for the inpainting task. It supports training both the text encoder and the UNet model and uses various settings to control the training process.
Constructor
^^^^^^^^^^^
.. code-block:: python
__init__(self, pretrained_model_name_or_path, resolution, center_crop, ...)
- **pretrained_model_name_or_path**: The path or name of the pre-trained model.
- **resolution**: The resolution of the images.
- **center_crop**: Whether to apply center cropping during data preparation.
- **train_text_encoder**: Whether to train the text encoder.
- **dataset**: The dataset object.
- **learning_rate**: The initial learning rate.
- **max_training_steps**: The maximum number of training steps.
- **save_steps**: The number of steps between saving checkpoints.
- **train_batch_size**: The batch size.
- **gradient_accumulation_steps**: The number of steps to accumulate gradients.
- **mixed_precision**: Use of mixed precision ("fp16", "bf16", or None).
- **gradient_checkpointing**: Use of gradient checkpointing.
- **use_8bit_adam**: Use of the 8-bit Adam optimizer.
- **seed**: The random seed for reproducibility.
- **output_dir**: The directory for saving results.
- **push_to_hub**: Whether to upload the results to the Hugging Face Hub.
- **repo_id**: The repository ID on Hugging Face Hub.
Methods
^^^^^^^
- **prepare_mask_and_masked_image(image, mask)**: Prepares the mask and masked image.
- **random_mask(im_shape, ratio=1, mask_full_image=False)**: Generates a random mask.
- **load_args_for_training()**: Loads the necessary components of the model for training.
- **collate_fn(examples)**: Forms a batch of data for the model.
- **__call__(self, *args, **kwargs)**: The main method for running the training process.
Usage
-----
To start training, you should create an instance of the ``StableDiffusionInpaintingFineTune`` class and call its ``__call__`` method, passing the necessary arguments.
.. code-block:: python
model = StableDiffusionInpaintingFineTune(
pretrained_model_name_or_path="path_to_model",
resolution=512,
center_crop=True,
...
)
model()
License
-------
The project is distributed under the MIT License.
Raw data
{
"_id": null,
"home_page": "https://github.com/skillfi/fine-tuning",
"name": "dreamfinetune",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": null,
"author": "Alex",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/dc/a2/ff805d93aa609042d01a0e383c19a07172a3bc1345ea00dd3161a060c4bc/dreamfinetune-1.5.tar.gz",
"platform": null,
"description": "StableDiffusionInpaintingFineTune\r\n=================================\r\n\r\nThis project provides a toolkit for fine-tuning the Stable Diffusion model for inpainting tasks (image restoration based on a mask) using PyTorch and Hugging Face Diffusers libraries.\r\n\r\nRequirements\r\n------------\r\n\r\nBefore starting, you need to install the following libraries:\r\n .. code-block:: python\r\n\r\n pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121\r\n\r\n- ``torch``\r\n- ``diffusers``\r\n- ``transformers``\r\n- ``accelerate``\r\n- ``huggingface_hub``\r\n- ``PIL``\r\n- ``numpy``\r\n- ``tqdm``\r\n\r\nDescription\r\n-----------\r\n\r\nStableDiffusionInpaintingFineTune\r\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r\n\r\nThis class is responsible for fine-tuning the Stable Diffusion model for the inpainting task. It supports training both the text encoder and the UNet model and uses various settings to control the training process.\r\n\r\nConstructor\r\n^^^^^^^^^^^\r\n\r\n.. code-block:: python\r\n\r\n __init__(self, pretrained_model_name_or_path, resolution, center_crop, ...)\r\n\r\n- **pretrained_model_name_or_path**: The path or name of the pre-trained model.\r\n- **resolution**: The resolution of the images.\r\n- **center_crop**: Whether to apply center cropping during data preparation.\r\n- **train_text_encoder**: Whether to train the text encoder.\r\n- **dataset**: The dataset object.\r\n- **learning_rate**: The initial learning rate.\r\n- **max_training_steps**: The maximum number of training steps.\r\n- **save_steps**: The number of steps between saving checkpoints.\r\n- **train_batch_size**: The batch size.\r\n- **gradient_accumulation_steps**: The number of steps to accumulate gradients.\r\n- **mixed_precision**: Use of mixed precision (\"fp16\", \"bf16\", or None).\r\n- **gradient_checkpointing**: Use of gradient checkpointing.\r\n- **use_8bit_adam**: Use of the 8-bit Adam optimizer.\r\n- **seed**: The random seed for reproducibility.\r\n- **output_dir**: The directory for saving results.\r\n- **push_to_hub**: Whether to upload the results to the Hugging Face Hub.\r\n- **repo_id**: The repository ID on Hugging Face Hub.\r\n\r\nMethods\r\n^^^^^^^\r\n\r\n- **prepare_mask_and_masked_image(image, mask)**: Prepares the mask and masked image.\r\n- **random_mask(im_shape, ratio=1, mask_full_image=False)**: Generates a random mask.\r\n- **load_args_for_training()**: Loads the necessary components of the model for training.\r\n- **collate_fn(examples)**: Forms a batch of data for the model.\r\n- **__call__(self, *args, **kwargs)**: The main method for running the training process.\r\n\r\nUsage\r\n-----\r\n\r\nTo start training, you should create an instance of the ``StableDiffusionInpaintingFineTune`` class and call its ``__call__`` method, passing the necessary arguments.\r\n\r\n.. code-block:: python\r\n\r\n model = StableDiffusionInpaintingFineTune(\r\n pretrained_model_name_or_path=\"path_to_model\",\r\n resolution=512,\r\n center_crop=True,\r\n ...\r\n )\r\n\r\n model()\r\n\r\nLicense\r\n-------\r\n\r\nThe project is distributed under the MIT License.\r\n",
"bugtrack_url": null,
"license": "Apache 2.0 License",
"summary": null,
"version": "1.5",
"project_urls": {
"Homepage": "https://github.com/skillfi/fine-tuning"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d84206e66a10af3d54f2a13c70e6347c71bc1f0c7266fcbb97cc965e84ee0a83",
"md5": "c0a6c0d01414e7ee36d143070739a218",
"sha256": "de14b16154a840b1aede4d9ecb9f9f5f2649f1d488c5d8a52d2a19a6de3cdf61"
},
"downloads": -1,
"filename": "dreamfinetune-1.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c0a6c0d01414e7ee36d143070739a218",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 19906,
"upload_time": "2024-08-28T09:18:46",
"upload_time_iso_8601": "2024-08-28T09:18:46.763877Z",
"url": "https://files.pythonhosted.org/packages/d8/42/06e66a10af3d54f2a13c70e6347c71bc1f0c7266fcbb97cc965e84ee0a83/dreamfinetune-1.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "dca2ff805d93aa609042d01a0e383c19a07172a3bc1345ea00dd3161a060c4bc",
"md5": "e4f8269f4c86f33708662c6d827f9773",
"sha256": "350bef3fa10162a107295363cb32509122b253bdabf9481c7fbdb908d2811cf3"
},
"downloads": -1,
"filename": "dreamfinetune-1.5.tar.gz",
"has_sig": false,
"md5_digest": "e4f8269f4c86f33708662c6d827f9773",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 17000,
"upload_time": "2024-08-28T09:18:48",
"upload_time_iso_8601": "2024-08-28T09:18:48.369967Z",
"url": "https://files.pythonhosted.org/packages/dc/a2/ff805d93aa609042d01a0e383c19a07172a3bc1345ea00dd3161a060c4bc/dreamfinetune-1.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-28 09:18:48",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "skillfi",
"github_project": "fine-tuning",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "dreamfinetune"
}