ds-practicals


Nameds-practicals JSON
Version 0.1.1 PyPI version JSON
download
home_pageNone
SummaryA collection of practical examples for data mining, visualization, and machine learning
upload_time2025-11-05 18:59:03
maintainerNone
docs_urlNone
authorNone
requires_python>=3.7
licenseNone
keywords data-science machine-learning pandas visualization practical
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Pandaas

A comprehensive collection of practical examples for data mining, visualization, and machine learning. This package contains 13 practical examples covering various topics in data science and machine learning.

## Installation

```bash
pip install pandaas
```

## Features

- **13 Practical Examples**: Covering data analysis, visualization, and machine learning
- **Easy Access**: Each practical has a `print_code()` function to view the complete code
- **Educational**: Perfect for learning data science concepts

## Usage

```python
from pandaas import pract1, pract2, pract7

# Run a practical
pract1.print_code()  # Prints the entire code

# Or import and use directly
import pandaas.pract1 as p1
p1.print_code()
```

## Available Practicals

### Machine Learning (ML)
- `pract1`: Principal Component Analysis (PCA)
- `pract2`: Linear Regression Models Comparison
- `pract3`: Support Vector Machine (SVM) for Digit Classification
- `pract4`: K-Means Clustering
- `pract5`: Random Forest Classifier
- `pract6`: Q-Learning Reinforcement Learning

### Data Mining and Visualization (DMV)
- `pract7`: Data Loading and Analysis
- `pract8`: Weather Data API and Visualization
- `pract9`: Data Cleaning and Preprocessing
- `pract10`: Data Filtering and Aggregation
- `pract11`: Air Quality Data Visualization
- `pract12`: Retail Sales Analysis by Region
- `pract13`: Time Series Analysis and Forecasting

## Requirements

- Python >= 3.7
- pandas >= 1.3.0
- numpy >= 1.21.0
- matplotlib >= 3.4.0
- seaborn >= 0.11.0
- scikit-learn >= 1.0.0
- statsmodels >= 0.13.0
- requests >= 2.26.0

## License

MIT License

## Contributing

Contributions are welcome! Please feel free to submit a Pull Request.


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "ds-practicals",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "data-science, machine-learning, pandas, visualization, practical",
    "author": null,
    "author_email": "Your Name <your.email@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/49/71/8477957c6687b8d9410f566b02be063399f9b3289e0c1984694f5856805b/ds_practicals-0.1.1.tar.gz",
    "platform": null,
    "description": "# Pandaas\r\n\r\nA comprehensive collection of practical examples for data mining, visualization, and machine learning. This package contains 13 practical examples covering various topics in data science and machine learning.\r\n\r\n## Installation\r\n\r\n```bash\r\npip install pandaas\r\n```\r\n\r\n## Features\r\n\r\n- **13 Practical Examples**: Covering data analysis, visualization, and machine learning\r\n- **Easy Access**: Each practical has a `print_code()` function to view the complete code\r\n- **Educational**: Perfect for learning data science concepts\r\n\r\n## Usage\r\n\r\n```python\r\nfrom pandaas import pract1, pract2, pract7\r\n\r\n# Run a practical\r\npract1.print_code()  # Prints the entire code\r\n\r\n# Or import and use directly\r\nimport pandaas.pract1 as p1\r\np1.print_code()\r\n```\r\n\r\n## Available Practicals\r\n\r\n### Machine Learning (ML)\r\n- `pract1`: Principal Component Analysis (PCA)\r\n- `pract2`: Linear Regression Models Comparison\r\n- `pract3`: Support Vector Machine (SVM) for Digit Classification\r\n- `pract4`: K-Means Clustering\r\n- `pract5`: Random Forest Classifier\r\n- `pract6`: Q-Learning Reinforcement Learning\r\n\r\n### Data Mining and Visualization (DMV)\r\n- `pract7`: Data Loading and Analysis\r\n- `pract8`: Weather Data API and Visualization\r\n- `pract9`: Data Cleaning and Preprocessing\r\n- `pract10`: Data Filtering and Aggregation\r\n- `pract11`: Air Quality Data Visualization\r\n- `pract12`: Retail Sales Analysis by Region\r\n- `pract13`: Time Series Analysis and Forecasting\r\n\r\n## Requirements\r\n\r\n- Python >= 3.7\r\n- pandas >= 1.3.0\r\n- numpy >= 1.21.0\r\n- matplotlib >= 3.4.0\r\n- seaborn >= 0.11.0\r\n- scikit-learn >= 1.0.0\r\n- statsmodels >= 0.13.0\r\n- requests >= 2.26.0\r\n\r\n## License\r\n\r\nMIT License\r\n\r\n## Contributing\r\n\r\nContributions are welcome! Please feel free to submit a Pull Request.\r\n\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A collection of practical examples for data mining, visualization, and machine learning",
    "version": "0.1.1",
    "project_urls": null,
    "split_keywords": [
        "data-science",
        " machine-learning",
        " pandas",
        " visualization",
        " practical"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1f734324d5364ca47dcdc43ea3d29baa55d71f81923e14bbaf7bd597805e0675",
                "md5": "6bbdd50af99e32f54f19c326f17589fb",
                "sha256": "cc04566252c04fa9bc9f2c46afce7d151992c12324988917f1e3b9d33461ba6f"
            },
            "downloads": -1,
            "filename": "ds_practicals-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6bbdd50af99e32f54f19c326f17589fb",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 16057,
            "upload_time": "2025-11-05T18:59:02",
            "upload_time_iso_8601": "2025-11-05T18:59:02.747763Z",
            "url": "https://files.pythonhosted.org/packages/1f/73/4324d5364ca47dcdc43ea3d29baa55d71f81923e14bbaf7bd597805e0675/ds_practicals-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "49718477957c6687b8d9410f566b02be063399f9b3289e0c1984694f5856805b",
                "md5": "7c9ecb911dc950c327924f87e77f6578",
                "sha256": "fb6aabb827cd1f24933a64395262e2510e56e33b97392d1350f1595805130dfa"
            },
            "downloads": -1,
            "filename": "ds_practicals-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "7c9ecb911dc950c327924f87e77f6578",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 11439,
            "upload_time": "2025-11-05T18:59:03",
            "upload_time_iso_8601": "2025-11-05T18:59:03.811535Z",
            "url": "https://files.pythonhosted.org/packages/49/71/8477957c6687b8d9410f566b02be063399f9b3289e0c1984694f5856805b/ds_practicals-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-11-05 18:59:03",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "ds-practicals"
}
        
Elapsed time: 2.41042s