dsaedge


Namedsaedge JSON
Version 0.5.0 PyPI version JSON
download
home_pagehttps://github.com/thiyagarajan2002/dsaedge
SummaryA comprehensive Python package for various data structures and algorithms implementations.
upload_time2025-07-21 06:38:07
maintainerNone
docs_urlNone
authorThiyagarajan
requires_python>=3.9
licenseMIT
keywords data structures algorithms python linked list tree graph sort search dynamic programming backtracking
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # dsaedge: Data Structures and Algorithms in Python

A comprehensive collection of various data structures and algorithms implemented in Python.

## Installation

You can install this package using pip:

```bash
pip install dsaedge
```

## Usage

Here are some examples of how to use the implemented data structures and algorithms:

### Advanced Data Structures

```python
# Disjoint Set Union (DSU)
from dsaedge.advanced_data_structures.disjoint_set_union import DSU

dsu = DSU()
dsu.make_set(1)
dsu.make_set(2)
dsu.make_set(3)
dsu.union(1, 2)
print(f"DSU - Find(1): {dsu.find(1)}")
print(f"DSU - Find(2): {dsu.find(2)}")
print(f"DSU - Are 1 and 3 in the same set? {dsu.find(1) == dsu.find(3)}")

# Fenwick Tree (Binary Indexed Tree)
from dsaedge.advanced_data_structures.fenwick_tree import FenwickTree

ft = FenwickTree(10)
ft.update(0, 5)  # Add 5 to index 0
ft.update(4, 3)  # Add 3 to index 4
print(f"Fenwick Tree - Sum up to index 0: {ft.query(0)}")
print(f"Fenwick Tree - Sum up to index 4: {ft.query(4)}")
print(f"Fenwick Tree - Sum in range [0, 4]: {ft.range_query(0, 4)}")

# Segment Tree
from dsaedge.advanced_data_structures.segment_tree import SegmentTree

arr_seg = [1, 3, 5, 7, 9, 11]
st = SegmentTree(arr_seg)
print(f"Segment Tree - Sum of range [1, 4]: {st.query(1, 4)}")
st.update(2, 10)  # Update index 2 to 10
print(f"Segment Tree - Sum of range [1, 4] after update: {st.query(1, 4)}")

# Trie (Prefix Tree)
from dsaedge.advanced_data_structures.trie import Trie

trie = Trie()
trie.insert("apple")
trie.insert("apricot")
print(f"Trie - Search 'apple': {trie.search('apple')}")
print(f"Trie - Search 'app': {trie.search('app')}")
print(f"Trie - Starts with 'app': {trie.starts_with('app')}")
print(f"Trie - Starts with 'ban': {trie.starts_with('ban')}")
```

### Algorithmic Paradigms

```python
# Knuth-Morris-Pratt (KMP) string searching
from dsaedge.algorithmic_paradigms.kmp_search import kmp_search

text = "ABABDABACDABABCABAB"
pattern = "ABABCABAB"
occurrences = kmp_search(text, pattern)
print(f"KMP Search - Pattern found at indices: {occurrences}")

# 0/1 Knapsack Problem
from dsaedge.algorithmic_paradigms.knapsack_problem import knapsack_01

weights = [1, 2, 3, 8, 7]
values = [20, 5, 10, 40, 15]
capacity = 10
max_value = knapsack_01(weights, values, capacity)
print(f"Knapsack Problem - Maximum value: {max_value}")

# Longest Common Subsequence (LCS)
from dsaedge.algorithmic_paradigms.longest_common_subsequence import longest_common_subsequence, reconstruct_lcs

s1 = "AGGTAB"
s2 = "GXTXAYB"
lcs_length = longest_common_subsequence(s1, s2)
lcs_string = reconstruct_lcs(s1, s2)
print(f"LCS - Length: {lcs_length}, Subsequence: {lcs_string}")

# N-Queens Problem
from dsaedge.algorithmic_paradigms.n_queens import solve_n_queens

n_queens_solutions = solve_n_queens(4)
print(f"N-Queens Problem - Solutions for N=4: {len(n_queens_solutions)}")
for sol in n_queens_solutions:
    for row in sol:
        print(row)
    print()

# Sudoku Solver
from dsaedge.algorithmic_paradigms.sudoku_solver import solve_sudoku, print_board

sudoku_board = [
    [5,3,0,0,7,0,0,0,0],
    [6,0,0,1,9,5,0,0,0],
    [0,9,8,0,0,0,0,6,0],
    [8,0,0,0,6,0,0,0,3],
    [4,0,0,8,0,3,0,0,1],
    [7,0,0,0,2,0,0,0,6],
    [0,6,0,0,0,0,2,8,0],
    [0,0,0,4,1,9,0,0,5],
    [0,0,0,0,8,0,0,7,9]
]
print("Sudoku Solver - Original Board:")
print_board(sudoku_board)
if solve_sudoku(sudoku_board):
    print("
Sudoku Solver - Solved Board:")
    print_board(sudoku_board)
else:
    print("
Sudoku Solver - No solution exists.")
```

### Graphs

```python
# Graph Representation (Adjacency List) and Algorithms (BFS, DFS, Dijkstra, Prim)
from dsaedge.graphs.graph_representation import Graph

g = Graph()
g.add_edge('A', 'B', 1)
g.add_edge('A', 'C', 4)
g.add_edge('B', 'C', 2)
g.add_edge('B', 'D', 5)
g.add_edge('C', 'D', 1)

print(f"Graph - BFS from A: {g.bfs('A')}")
print(f"Graph - DFS from A: {g.dfs('A')}")

distances_dijkstra, _ = g.dijkstra('A')
print(f"Graph - Dijkstra distances from A: {distances_dijkstra}")

mst_cost, mst_edges = g.prims_algorithm('A')
print(f"Graph - Prim's MST cost: {mst_cost}, Edges: {mst_edges}")

# Kruskal's Algorithm
from dsaedge.graphs.kruskal_algorithm import kruskal_algorithm

vertices_kruskal = ['A', 'B', 'C', 'D', 'E']
edges_kruskal = [
    (1, 'A', 'B'), (4, 'A', 'C'), (2, 'B', 'C'),
    (5, 'B', 'D'), (1, 'C', 'D'), (3, 'D', 'E')
]
mst_cost_kruskal, mst_edges_kruskal = kruskal_algorithm(vertices_kruskal, edges_kruskal)
print(f"Kruskal's Algorithm - MST cost: {mst_cost_kruskal}, Edges: {mst_edges_kruskal}")

# Topological Sort
from dsaedge.graphs.topological_sort import Graph as TopologicalGraph, topological_sort

g_ts = TopologicalGraph(6)
g_ts.add_edge(5, 2)
g_ts.add_edge(5, 0)
g_ts.add_edge(4, 0)
g_ts.add_edge(4, 1)
g_ts.add_edge(2, 3)
g_ts.add_edge(3, 1)

top_order = topological_sort(g_ts)
print(f"Topological Sort - Order: {top_order}")
```

### Hash Tables

```python
# Hash Table
from dsaedge.hash_tables.hash_table import HashTable

ht = HashTable()
ht.set("name", "Alice")
ht.set("age", 30)
ht["city"] = "New York" # Using dictionary-style assignment

print(f"Hash Table - Name: {ht.get('name')}")
print(f"Hash Table - City: {ht['city']}")

try:
    print(f"Hash Table - Occupation: {ht.get('occupation')}")
except KeyError as e:
    print(f"Hash Table - Error: {e}")

del ht["age"] # Using dictionary-style deletion
print(f"Hash Table - After deleting age: {ht}")
```

### Heaps

```python
# Min-Heap
from dsaedge.heaps.min_heap import MinHeap

min_heap = MinHeap()
min_heap.insert(3)
min_heap.insert(1)
min_heap.insert(4)
min_heap.insert(1)
min_heap.insert(5)

print(f"Min-Heap - Min element: {min_heap.get_min()}")
print(f"Min-Heap - Extracted min: {min_heap.extract_min()}")
print(f"Min-Heap - New min element: {min_heap.get_min()}")
print(f"Min-Heap - Is empty: {min_heap.is_empty()}")
print(f"Min-Heap - Size: {min_heap.size()}")
```

### Linked Lists

```python
# Singly Linked List
from dsaedge.linked_lists.singly_linked_list import SinglyLinkedList

sll = SinglyLinkedList()
sll.append(10)
sll.prepend(5)
sll.insert_at_position(7, 1)
print(f"Singly Linked List: {sll}")
sll.delete(7)
print(f"Singly Linked List after deleting 7: {sll}")
print(f"Singly Linked List - Length: {len(sll)}")

# Doubly Linked List
from dsaedge.linked_lists.doubly_linked_list import DoublyLinkedList

dll = DoublyLinkedList()
dll.append(1)
dll.prepend(0)
dll.insert_at_position(2, 2)
print(f"Doubly Linked List: {dll}")
dll.delete(1)
print(f"Doubly Linked List after deleting 1: {dll}")

# Circular Singly Linked List
from dsaedge.linked_lists.circular_singly_linked_list import CircularSinglyLinkedList

csll = CircularSinglyLinkedList()
csll.append(1)
csll.append(2)
csll.prepend(0)
print(f"Circular Singly Linked List: {csll}")
csll.delete(1)
print(f"Circular Singly Linked List after deleting 1: {csll}")

# Circular Doubly Linked List
from dsaedge.linked_lists.circular_doubly_linked_list import CircularDoublyLinkedList

cdll = CircularDoublyLinkedList()
cdll.append(10)
cdll.append(20)
cdll.prepend(5)
print(f"Circular Doubly Linked List: {cdll.display()}")
```

### Queue

```python
# Queue (implemented with Linked List)
from dsaedge.queue import Queue

q = Queue()
q.enqueue(10)
q.enqueue(20)
print(f"Queue: {q.display()}")
print(f"Peek: {q.peek()}")
q.dequeue()
print(f"Queue after dequeue: {q.display()}")
```

### Stack

```python
# Stack (implemented with Linked List)
from dsaedge.stack import Stack

s = Stack()
s.push(100)
s.push(200)
print(f"Stack: {s.display()}")
print(f"Peek: {s.peek()}")
s.pop()
print(f"Stack after pop: {s.display()}")
```

### Searching

```python
# Searching Algorithms
from dsaedge.searching.linear_search import Linear_Search
from dsaedge.searching.binary_search import Binary_Search, Binary_Search_Recursive

arr_search = [1, 5, 2, 8, 3, 9, 4]
target_linear = 8
print(f"Linear Search - Index of {target_linear}: {Linear_Search(arr_search, target_linear)}")

arr_sorted = [1, 2, 3, 4, 5, 8, 9]
target_binary = 4
print(f"Binary Search (Iterative) - Index of {target_binary}: {Binary_Search(arr_sorted, target_binary)}")
print(f"Binary Search (Recursive) - Index of {target_binary}: {Binary_Search_Recursive(arr_sorted, 0, len(arr_sorted) - 1, target_binary)}")
```

### Sorting

```python
# Sorting Algorithms
from dsaedge.sorting.bubble_sort import Bubble_Sort
from dsaedge.sorting.heap_sort import Heap_Sort
from dsaedge.sorting.insertion_sort import Insertion_Sort
from dsaedge.sorting.merge_sort import Merge_Sort
from dsaedge.sorting.quick_sort import Quick_Sort
from dsaedge.sorting.selection_sort import Selection_Sort

arr_sort = [64, 34, 25, 12, 22, 11, 90]

# These functions sort the list in-place and return it.
print(f"Original Array: {arr_sort}")
print(f"Bubble Sort: {Bubble_Sort(arr_sort[:])}")
print(f"Heap Sort: {Heap_Sort(arr_sort[:])}")
print(f"Insertion Sort: {Insertion_Sort(arr_sort[:])}")
print(f"Merge Sort: {Merge_Sort(arr_sort[:])}")
print(f"Quick Sort: {Quick_Sort(arr_sort[:])}")
print(f"Selection Sort: {Selection_Sort(arr_sort[:])}")
```

### Trees

```python
# Binary Search Tree (BST)
from dsaedge.trees.binary_search_tree import BinarySearchTree

bst = BinarySearchTree()
bst.insert(50)
bst.insert(30)
bst.insert(70)
bst.insert(20)
bst.insert(40)
bst.insert(60)
bst.insert(80)
print(f"BST - Search 40: {bst.search(40).data if bst.search(40) else None}")
bst.delete(30)
print(f"BST - In-order traversal after deleting 30: {bst.in_order_traversal()}")

# AVL Tree
from dsaedge.trees.avl_tree import AVLTree

avl = AVLTree()
avl.insert(10)
avl.insert(20)
avl.insert(30)
avl.insert(40)
avl.insert(50)
avl.insert(25)
print(f"AVL Tree - In-order traversal: {avl.in_order_traversal()}")
avl.delete(30)
print(f"AVL Tree - In-order traversal after deleting 30: {avl.in_order_traversal()}")
```

## Implemented Data Structures and Algorithms

The `dsaedge` package is organized into several modules, each focusing on a specific category of data structures or algorithms.

### Data Structures

*   **`advanced_data_structures`**
    *   `disjoint_set_union.py`: Disjoint Set Union (DSU) with path compression and union by size.
    *   `fenwick_tree.py`: Fenwick Tree (Binary Indexed Tree) for prefix sums.
    *   `segment_tree.py`: Segment Tree for range queries and point updates.
    *   `trie.py`: Trie (Prefix Tree) for string searching.
*   **`hash_tables`**
    *   `hash_table.py`: Hash Table with chaining for collision resolution.
*   **`heaps`**
    *   `min_heap.py`: Min-Heap implementation.
*   **`linked_lists`**
    *   `singly_linked_list.py`: Standard Singly Linked List.
    *   `doubly_linked_list.py`: Standard Doubly Linked List.
    *   `circular_singly_linked_list.py`: Circular Singly Linked List.
    *   `circular_doubly_linked_list.py`: Circular Doubly Linked List.
*   **`queue`**
    *   `queue.py`: Queue implementation using a linked list.
*   **`stack`**
    *   `stack.py`: Stack implementation using a linked list.
*   **`trees`**
    *   `binary_tree.py`: Generic Binary Tree with traversal methods.
    *   `binary_search_tree.py`: Binary Search Tree (BST).
    *   `avl_tree.py`: Self-balancing AVL Tree.
    *   `red_black_tree.py`: Self-balancing Red-Black Tree.
    *   `splay_tree.py`: Self-balancing Splay Tree.
    *   `tree_node.py`: Generic tree node class.
    *   And modules for tree-related operations, properties, traversals, utilities, exceptions, serialization, and visualization.

### Algorithms

*   **`algorithmic_paradigms`**
    *   `kmp_search.py`: Knuth-Morris-Pratt (KMP) string searching.
    *   `knapsack_problem.py`: 0/1 Knapsack problem (Dynamic Programming).
    *   `longest_common_subsequence.py`: Longest Common Subsequence (LCS) (Dynamic Programming).
    *   `n_queens.py`: N-Queens problem solver (Backtracking).
    *   `sudoku_solver.py`: Sudoku solver (Backtracking).
*   **`graphs`**
    *   `graph_representation.py`: Basic graph representation with BFS, DFS, Dijkstra's, and Prim's.
    *   `bellman_ford.py`: Bellman-Ford algorithm for shortest paths with negative weights.
    *   `dijkstra.py`: Dijkstra's algorithm for single-source shortest paths.
    *   `floyd_warshall.py`: Floyd-Warshall algorithm for all-pairs shortest paths.
    *   `johnson.py`: Johnson's algorithm for all-pairs shortest paths in sparse graphs.
    *   `kruskal_algorithm.py`: Kruskal's algorithm for Minimum Spanning Tree (MST).
    *   `prim.py`: Prim's algorithm for Minimum Spanning Tree (MST).
    *   `topological_sort.py`: Topological Sort for Directed Acyclic Graphs (DAG).
    *   `cycle_detection.py`: Detects cycles in directed and undirected graphs.
    *   `articulation_points.py`: Finds articulation points (cut vertices).
    *   `bridges.py`: Finds bridges in a graph.
    *   `biconnected_components.py`: Finds biconnected components.
    *   `kosaraju.py`: Kosaraju's algorithm for Strongly Connected Components (SCCs).
    *   `tarjan.py`: Tarjan's algorithm for Strongly Connected Components (SCCs).
    *   `network_flow.py`: Edmonds-Karp algorithm for maximum flow.
    *   `graph_matching.py`: Hopcroft-Karp algorithm for maximum bipartite matching.
    *   `graph_coloring.py`: Greedy algorithm for vertex coloring.
    *   `graph_partitioning.py`: Kernighan-Lin algorithm for graph partitioning.
    *   `graph_clustering.py`: Girvan-Newman algorithm for community detection.
    *   And modules for graph analysis, search, statistics, utilities, and more.
*   **`searching`**
    *   `linear_search.py`: Linear Search.
    *   `binary_search.py`: Binary Search (iterative and recursive).
*   **`sorting`**
    *   `bubble_sort.py`: Bubble Sort.
    *   `selection_sort.py`: Selection Sort.
    *   `insertion_sort.py`: Insertion Sort.
    *   `merge_sort.py`: Merge Sort.
    *   `quick_sort.py`: Quick Sort.
    *   `heap_sort.py`: Heap Sort.

## Contributing

Contributions are welcome! Please feel free to open issues or submit pull requests.

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/thiyagarajan2002/dsaedge",
    "name": "dsaedge",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "data structures algorithms python linked list tree graph sort search dynamic programming backtracking",
    "author": "Thiyagarajan",
    "author_email": "trj08012002@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/43/ac/f52596ad248deea632a249acd34c81169f489c78bd1351413c1af249c399/dsaedge-0.5.0.tar.gz",
    "platform": null,
    "description": "# dsaedge: Data Structures and Algorithms in Python\n\nA comprehensive collection of various data structures and algorithms implemented in Python.\n\n## Installation\n\nYou can install this package using pip:\n\n```bash\npip install dsaedge\n```\n\n## Usage\n\nHere are some examples of how to use the implemented data structures and algorithms:\n\n### Advanced Data Structures\n\n```python\n# Disjoint Set Union (DSU)\nfrom dsaedge.advanced_data_structures.disjoint_set_union import DSU\n\ndsu = DSU()\ndsu.make_set(1)\ndsu.make_set(2)\ndsu.make_set(3)\ndsu.union(1, 2)\nprint(f\"DSU - Find(1): {dsu.find(1)}\")\nprint(f\"DSU - Find(2): {dsu.find(2)}\")\nprint(f\"DSU - Are 1 and 3 in the same set? {dsu.find(1) == dsu.find(3)}\")\n\n# Fenwick Tree (Binary Indexed Tree)\nfrom dsaedge.advanced_data_structures.fenwick_tree import FenwickTree\n\nft = FenwickTree(10)\nft.update(0, 5)  # Add 5 to index 0\nft.update(4, 3)  # Add 3 to index 4\nprint(f\"Fenwick Tree - Sum up to index 0: {ft.query(0)}\")\nprint(f\"Fenwick Tree - Sum up to index 4: {ft.query(4)}\")\nprint(f\"Fenwick Tree - Sum in range [0, 4]: {ft.range_query(0, 4)}\")\n\n# Segment Tree\nfrom dsaedge.advanced_data_structures.segment_tree import SegmentTree\n\narr_seg = [1, 3, 5, 7, 9, 11]\nst = SegmentTree(arr_seg)\nprint(f\"Segment Tree - Sum of range [1, 4]: {st.query(1, 4)}\")\nst.update(2, 10)  # Update index 2 to 10\nprint(f\"Segment Tree - Sum of range [1, 4] after update: {st.query(1, 4)}\")\n\n# Trie (Prefix Tree)\nfrom dsaedge.advanced_data_structures.trie import Trie\n\ntrie = Trie()\ntrie.insert(\"apple\")\ntrie.insert(\"apricot\")\nprint(f\"Trie - Search 'apple': {trie.search('apple')}\")\nprint(f\"Trie - Search 'app': {trie.search('app')}\")\nprint(f\"Trie - Starts with 'app': {trie.starts_with('app')}\")\nprint(f\"Trie - Starts with 'ban': {trie.starts_with('ban')}\")\n```\n\n### Algorithmic Paradigms\n\n```python\n# Knuth-Morris-Pratt (KMP) string searching\nfrom dsaedge.algorithmic_paradigms.kmp_search import kmp_search\n\ntext = \"ABABDABACDABABCABAB\"\npattern = \"ABABCABAB\"\noccurrences = kmp_search(text, pattern)\nprint(f\"KMP Search - Pattern found at indices: {occurrences}\")\n\n# 0/1 Knapsack Problem\nfrom dsaedge.algorithmic_paradigms.knapsack_problem import knapsack_01\n\nweights = [1, 2, 3, 8, 7]\nvalues = [20, 5, 10, 40, 15]\ncapacity = 10\nmax_value = knapsack_01(weights, values, capacity)\nprint(f\"Knapsack Problem - Maximum value: {max_value}\")\n\n# Longest Common Subsequence (LCS)\nfrom dsaedge.algorithmic_paradigms.longest_common_subsequence import longest_common_subsequence, reconstruct_lcs\n\ns1 = \"AGGTAB\"\ns2 = \"GXTXAYB\"\nlcs_length = longest_common_subsequence(s1, s2)\nlcs_string = reconstruct_lcs(s1, s2)\nprint(f\"LCS - Length: {lcs_length}, Subsequence: {lcs_string}\")\n\n# N-Queens Problem\nfrom dsaedge.algorithmic_paradigms.n_queens import solve_n_queens\n\nn_queens_solutions = solve_n_queens(4)\nprint(f\"N-Queens Problem - Solutions for N=4: {len(n_queens_solutions)}\")\nfor sol in n_queens_solutions:\n    for row in sol:\n        print(row)\n    print()\n\n# Sudoku Solver\nfrom dsaedge.algorithmic_paradigms.sudoku_solver import solve_sudoku, print_board\n\nsudoku_board = [\n    [5,3,0,0,7,0,0,0,0],\n    [6,0,0,1,9,5,0,0,0],\n    [0,9,8,0,0,0,0,6,0],\n    [8,0,0,0,6,0,0,0,3],\n    [4,0,0,8,0,3,0,0,1],\n    [7,0,0,0,2,0,0,0,6],\n    [0,6,0,0,0,0,2,8,0],\n    [0,0,0,4,1,9,0,0,5],\n    [0,0,0,0,8,0,0,7,9]\n]\nprint(\"Sudoku Solver - Original Board:\")\nprint_board(sudoku_board)\nif solve_sudoku(sudoku_board):\n    print(\"\nSudoku Solver - Solved Board:\")\n    print_board(sudoku_board)\nelse:\n    print(\"\nSudoku Solver - No solution exists.\")\n```\n\n### Graphs\n\n```python\n# Graph Representation (Adjacency List) and Algorithms (BFS, DFS, Dijkstra, Prim)\nfrom dsaedge.graphs.graph_representation import Graph\n\ng = Graph()\ng.add_edge('A', 'B', 1)\ng.add_edge('A', 'C', 4)\ng.add_edge('B', 'C', 2)\ng.add_edge('B', 'D', 5)\ng.add_edge('C', 'D', 1)\n\nprint(f\"Graph - BFS from A: {g.bfs('A')}\")\nprint(f\"Graph - DFS from A: {g.dfs('A')}\")\n\ndistances_dijkstra, _ = g.dijkstra('A')\nprint(f\"Graph - Dijkstra distances from A: {distances_dijkstra}\")\n\nmst_cost, mst_edges = g.prims_algorithm('A')\nprint(f\"Graph - Prim's MST cost: {mst_cost}, Edges: {mst_edges}\")\n\n# Kruskal's Algorithm\nfrom dsaedge.graphs.kruskal_algorithm import kruskal_algorithm\n\nvertices_kruskal = ['A', 'B', 'C', 'D', 'E']\nedges_kruskal = [\n    (1, 'A', 'B'), (4, 'A', 'C'), (2, 'B', 'C'),\n    (5, 'B', 'D'), (1, 'C', 'D'), (3, 'D', 'E')\n]\nmst_cost_kruskal, mst_edges_kruskal = kruskal_algorithm(vertices_kruskal, edges_kruskal)\nprint(f\"Kruskal's Algorithm - MST cost: {mst_cost_kruskal}, Edges: {mst_edges_kruskal}\")\n\n# Topological Sort\nfrom dsaedge.graphs.topological_sort import Graph as TopologicalGraph, topological_sort\n\ng_ts = TopologicalGraph(6)\ng_ts.add_edge(5, 2)\ng_ts.add_edge(5, 0)\ng_ts.add_edge(4, 0)\ng_ts.add_edge(4, 1)\ng_ts.add_edge(2, 3)\ng_ts.add_edge(3, 1)\n\ntop_order = topological_sort(g_ts)\nprint(f\"Topological Sort - Order: {top_order}\")\n```\n\n### Hash Tables\n\n```python\n# Hash Table\nfrom dsaedge.hash_tables.hash_table import HashTable\n\nht = HashTable()\nht.set(\"name\", \"Alice\")\nht.set(\"age\", 30)\nht[\"city\"] = \"New York\" # Using dictionary-style assignment\n\nprint(f\"Hash Table - Name: {ht.get('name')}\")\nprint(f\"Hash Table - City: {ht['city']}\")\n\ntry:\n    print(f\"Hash Table - Occupation: {ht.get('occupation')}\")\nexcept KeyError as e:\n    print(f\"Hash Table - Error: {e}\")\n\ndel ht[\"age\"] # Using dictionary-style deletion\nprint(f\"Hash Table - After deleting age: {ht}\")\n```\n\n### Heaps\n\n```python\n# Min-Heap\nfrom dsaedge.heaps.min_heap import MinHeap\n\nmin_heap = MinHeap()\nmin_heap.insert(3)\nmin_heap.insert(1)\nmin_heap.insert(4)\nmin_heap.insert(1)\nmin_heap.insert(5)\n\nprint(f\"Min-Heap - Min element: {min_heap.get_min()}\")\nprint(f\"Min-Heap - Extracted min: {min_heap.extract_min()}\")\nprint(f\"Min-Heap - New min element: {min_heap.get_min()}\")\nprint(f\"Min-Heap - Is empty: {min_heap.is_empty()}\")\nprint(f\"Min-Heap - Size: {min_heap.size()}\")\n```\n\n### Linked Lists\n\n```python\n# Singly Linked List\nfrom dsaedge.linked_lists.singly_linked_list import SinglyLinkedList\n\nsll = SinglyLinkedList()\nsll.append(10)\nsll.prepend(5)\nsll.insert_at_position(7, 1)\nprint(f\"Singly Linked List: {sll}\")\nsll.delete(7)\nprint(f\"Singly Linked List after deleting 7: {sll}\")\nprint(f\"Singly Linked List - Length: {len(sll)}\")\n\n# Doubly Linked List\nfrom dsaedge.linked_lists.doubly_linked_list import DoublyLinkedList\n\ndll = DoublyLinkedList()\ndll.append(1)\ndll.prepend(0)\ndll.insert_at_position(2, 2)\nprint(f\"Doubly Linked List: {dll}\")\ndll.delete(1)\nprint(f\"Doubly Linked List after deleting 1: {dll}\")\n\n# Circular Singly Linked List\nfrom dsaedge.linked_lists.circular_singly_linked_list import CircularSinglyLinkedList\n\ncsll = CircularSinglyLinkedList()\ncsll.append(1)\ncsll.append(2)\ncsll.prepend(0)\nprint(f\"Circular Singly Linked List: {csll}\")\ncsll.delete(1)\nprint(f\"Circular Singly Linked List after deleting 1: {csll}\")\n\n# Circular Doubly Linked List\nfrom dsaedge.linked_lists.circular_doubly_linked_list import CircularDoublyLinkedList\n\ncdll = CircularDoublyLinkedList()\ncdll.append(10)\ncdll.append(20)\ncdll.prepend(5)\nprint(f\"Circular Doubly Linked List: {cdll.display()}\")\n```\n\n### Queue\n\n```python\n# Queue (implemented with Linked List)\nfrom dsaedge.queue import Queue\n\nq = Queue()\nq.enqueue(10)\nq.enqueue(20)\nprint(f\"Queue: {q.display()}\")\nprint(f\"Peek: {q.peek()}\")\nq.dequeue()\nprint(f\"Queue after dequeue: {q.display()}\")\n```\n\n### Stack\n\n```python\n# Stack (implemented with Linked List)\nfrom dsaedge.stack import Stack\n\ns = Stack()\ns.push(100)\ns.push(200)\nprint(f\"Stack: {s.display()}\")\nprint(f\"Peek: {s.peek()}\")\ns.pop()\nprint(f\"Stack after pop: {s.display()}\")\n```\n\n### Searching\n\n```python\n# Searching Algorithms\nfrom dsaedge.searching.linear_search import Linear_Search\nfrom dsaedge.searching.binary_search import Binary_Search, Binary_Search_Recursive\n\narr_search = [1, 5, 2, 8, 3, 9, 4]\ntarget_linear = 8\nprint(f\"Linear Search - Index of {target_linear}: {Linear_Search(arr_search, target_linear)}\")\n\narr_sorted = [1, 2, 3, 4, 5, 8, 9]\ntarget_binary = 4\nprint(f\"Binary Search (Iterative) - Index of {target_binary}: {Binary_Search(arr_sorted, target_binary)}\")\nprint(f\"Binary Search (Recursive) - Index of {target_binary}: {Binary_Search_Recursive(arr_sorted, 0, len(arr_sorted) - 1, target_binary)}\")\n```\n\n### Sorting\n\n```python\n# Sorting Algorithms\nfrom dsaedge.sorting.bubble_sort import Bubble_Sort\nfrom dsaedge.sorting.heap_sort import Heap_Sort\nfrom dsaedge.sorting.insertion_sort import Insertion_Sort\nfrom dsaedge.sorting.merge_sort import Merge_Sort\nfrom dsaedge.sorting.quick_sort import Quick_Sort\nfrom dsaedge.sorting.selection_sort import Selection_Sort\n\narr_sort = [64, 34, 25, 12, 22, 11, 90]\n\n# These functions sort the list in-place and return it.\nprint(f\"Original Array: {arr_sort}\")\nprint(f\"Bubble Sort: {Bubble_Sort(arr_sort[:])}\")\nprint(f\"Heap Sort: {Heap_Sort(arr_sort[:])}\")\nprint(f\"Insertion Sort: {Insertion_Sort(arr_sort[:])}\")\nprint(f\"Merge Sort: {Merge_Sort(arr_sort[:])}\")\nprint(f\"Quick Sort: {Quick_Sort(arr_sort[:])}\")\nprint(f\"Selection Sort: {Selection_Sort(arr_sort[:])}\")\n```\n\n### Trees\n\n```python\n# Binary Search Tree (BST)\nfrom dsaedge.trees.binary_search_tree import BinarySearchTree\n\nbst = BinarySearchTree()\nbst.insert(50)\nbst.insert(30)\nbst.insert(70)\nbst.insert(20)\nbst.insert(40)\nbst.insert(60)\nbst.insert(80)\nprint(f\"BST - Search 40: {bst.search(40).data if bst.search(40) else None}\")\nbst.delete(30)\nprint(f\"BST - In-order traversal after deleting 30: {bst.in_order_traversal()}\")\n\n# AVL Tree\nfrom dsaedge.trees.avl_tree import AVLTree\n\navl = AVLTree()\navl.insert(10)\navl.insert(20)\navl.insert(30)\navl.insert(40)\navl.insert(50)\navl.insert(25)\nprint(f\"AVL Tree - In-order traversal: {avl.in_order_traversal()}\")\navl.delete(30)\nprint(f\"AVL Tree - In-order traversal after deleting 30: {avl.in_order_traversal()}\")\n```\n\n## Implemented Data Structures and Algorithms\n\nThe `dsaedge` package is organized into several modules, each focusing on a specific category of data structures or algorithms.\n\n### Data Structures\n\n*   **`advanced_data_structures`**\n    *   `disjoint_set_union.py`: Disjoint Set Union (DSU) with path compression and union by size.\n    *   `fenwick_tree.py`: Fenwick Tree (Binary Indexed Tree) for prefix sums.\n    *   `segment_tree.py`: Segment Tree for range queries and point updates.\n    *   `trie.py`: Trie (Prefix Tree) for string searching.\n*   **`hash_tables`**\n    *   `hash_table.py`: Hash Table with chaining for collision resolution.\n*   **`heaps`**\n    *   `min_heap.py`: Min-Heap implementation.\n*   **`linked_lists`**\n    *   `singly_linked_list.py`: Standard Singly Linked List.\n    *   `doubly_linked_list.py`: Standard Doubly Linked List.\n    *   `circular_singly_linked_list.py`: Circular Singly Linked List.\n    *   `circular_doubly_linked_list.py`: Circular Doubly Linked List.\n*   **`queue`**\n    *   `queue.py`: Queue implementation using a linked list.\n*   **`stack`**\n    *   `stack.py`: Stack implementation using a linked list.\n*   **`trees`**\n    *   `binary_tree.py`: Generic Binary Tree with traversal methods.\n    *   `binary_search_tree.py`: Binary Search Tree (BST).\n    *   `avl_tree.py`: Self-balancing AVL Tree.\n    *   `red_black_tree.py`: Self-balancing Red-Black Tree.\n    *   `splay_tree.py`: Self-balancing Splay Tree.\n    *   `tree_node.py`: Generic tree node class.\n    *   And modules for tree-related operations, properties, traversals, utilities, exceptions, serialization, and visualization.\n\n### Algorithms\n\n*   **`algorithmic_paradigms`**\n    *   `kmp_search.py`: Knuth-Morris-Pratt (KMP) string searching.\n    *   `knapsack_problem.py`: 0/1 Knapsack problem (Dynamic Programming).\n    *   `longest_common_subsequence.py`: Longest Common Subsequence (LCS) (Dynamic Programming).\n    *   `n_queens.py`: N-Queens problem solver (Backtracking).\n    *   `sudoku_solver.py`: Sudoku solver (Backtracking).\n*   **`graphs`**\n    *   `graph_representation.py`: Basic graph representation with BFS, DFS, Dijkstra's, and Prim's.\n    *   `bellman_ford.py`: Bellman-Ford algorithm for shortest paths with negative weights.\n    *   `dijkstra.py`: Dijkstra's algorithm for single-source shortest paths.\n    *   `floyd_warshall.py`: Floyd-Warshall algorithm for all-pairs shortest paths.\n    *   `johnson.py`: Johnson's algorithm for all-pairs shortest paths in sparse graphs.\n    *   `kruskal_algorithm.py`: Kruskal's algorithm for Minimum Spanning Tree (MST).\n    *   `prim.py`: Prim's algorithm for Minimum Spanning Tree (MST).\n    *   `topological_sort.py`: Topological Sort for Directed Acyclic Graphs (DAG).\n    *   `cycle_detection.py`: Detects cycles in directed and undirected graphs.\n    *   `articulation_points.py`: Finds articulation points (cut vertices).\n    *   `bridges.py`: Finds bridges in a graph.\n    *   `biconnected_components.py`: Finds biconnected components.\n    *   `kosaraju.py`: Kosaraju's algorithm for Strongly Connected Components (SCCs).\n    *   `tarjan.py`: Tarjan's algorithm for Strongly Connected Components (SCCs).\n    *   `network_flow.py`: Edmonds-Karp algorithm for maximum flow.\n    *   `graph_matching.py`: Hopcroft-Karp algorithm for maximum bipartite matching.\n    *   `graph_coloring.py`: Greedy algorithm for vertex coloring.\n    *   `graph_partitioning.py`: Kernighan-Lin algorithm for graph partitioning.\n    *   `graph_clustering.py`: Girvan-Newman algorithm for community detection.\n    *   And modules for graph analysis, search, statistics, utilities, and more.\n*   **`searching`**\n    *   `linear_search.py`: Linear Search.\n    *   `binary_search.py`: Binary Search (iterative and recursive).\n*   **`sorting`**\n    *   `bubble_sort.py`: Bubble Sort.\n    *   `selection_sort.py`: Selection Sort.\n    *   `insertion_sort.py`: Insertion Sort.\n    *   `merge_sort.py`: Merge Sort.\n    *   `quick_sort.py`: Quick Sort.\n    *   `heap_sort.py`: Heap Sort.\n\n## Contributing\n\nContributions are welcome! Please feel free to open issues or submit pull requests.\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A comprehensive Python package for various data structures and algorithms implementations.",
    "version": "0.5.0",
    "project_urls": {
        "Homepage": "https://github.com/thiyagarajan2002/dsaedge"
    },
    "split_keywords": [
        "data",
        "structures",
        "algorithms",
        "python",
        "linked",
        "list",
        "tree",
        "graph",
        "sort",
        "search",
        "dynamic",
        "programming",
        "backtracking"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "361f7e7a978d51b9ee385ef6efe4c107976b768ef3080e252d78430a23a1da66",
                "md5": "177178b30536736c54ca92ac9d0c8f3f",
                "sha256": "f31268e308ee137bd1ef03c1c80d946f2c0ccc9ae42eb2f43fa196a2e5622813"
            },
            "downloads": -1,
            "filename": "dsaedge-0.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "177178b30536736c54ca92ac9d0c8f3f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 68874,
            "upload_time": "2025-07-21T06:38:04",
            "upload_time_iso_8601": "2025-07-21T06:38:04.467417Z",
            "url": "https://files.pythonhosted.org/packages/36/1f/7e7a978d51b9ee385ef6efe4c107976b768ef3080e252d78430a23a1da66/dsaedge-0.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "43acf52596ad248deea632a249acd34c81169f489c78bd1351413c1af249c399",
                "md5": "9a566ba8628d39862e95949bc099677c",
                "sha256": "c60ae56fbd3941d438dd09bb00af2d57a9dc499d4629f6f9982792972c86aee5"
            },
            "downloads": -1,
            "filename": "dsaedge-0.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "9a566ba8628d39862e95949bc099677c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 48261,
            "upload_time": "2025-07-21T06:38:07",
            "upload_time_iso_8601": "2025-07-21T06:38:07.677530Z",
            "url": "https://files.pythonhosted.org/packages/43/ac/f52596ad248deea632a249acd34c81169f489c78bd1351413c1af249c399/dsaedge-0.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-21 06:38:07",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "thiyagarajan2002",
    "github_project": "dsaedge",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "dsaedge"
}
        
Elapsed time: 2.65446s