# dsaedge: Data Structures and Algorithms in Python
A comprehensive collection of various data structures and algorithms implemented in Python.
## Installation
You can install this package using pip:
```bash
pip install dsaedge
```
## Usage
Here are some examples of how to use the implemented data structures and algorithms:
### Advanced Data Structures
```python
# Disjoint Set Union (DSU)
from dsaedge.advanced_data_structures.disjoint_set_union import DSU
dsu = DSU()
dsu.make_set(1)
dsu.make_set(2)
dsu.make_set(3)
dsu.union(1, 2)
print(f"DSU - Find(1): {dsu.find(1)}")
print(f"DSU - Find(2): {dsu.find(2)}")
print(f"DSU - Are 1 and 3 in the same set? {dsu.find(1) == dsu.find(3)}")
# Fenwick Tree (Binary Indexed Tree)
from dsaedge.advanced_data_structures.fenwick_tree import FenwickTree
ft = FenwickTree(10)
ft.update(0, 5) # Add 5 to index 0
ft.update(4, 3) # Add 3 to index 4
print(f"Fenwick Tree - Sum up to index 0: {ft.query(0)}")
print(f"Fenwick Tree - Sum up to index 4: {ft.query(4)}")
print(f"Fenwick Tree - Sum in range [0, 4]: {ft.range_query(0, 4)}")
# Segment Tree
from dsaedge.advanced_data_structures.segment_tree import SegmentTree
arr_seg = [1, 3, 5, 7, 9, 11]
st = SegmentTree(arr_seg)
print(f"Segment Tree - Sum of range [1, 4]: {st.query(1, 4)}")
st.update(2, 10) # Update index 2 to 10
print(f"Segment Tree - Sum of range [1, 4] after update: {st.query(1, 4)}")
# Trie (Prefix Tree)
from dsaedge.advanced_data_structures.trie import Trie
trie = Trie()
trie.insert("apple")
trie.insert("apricot")
print(f"Trie - Search 'apple': {trie.search('apple')}")
print(f"Trie - Search 'app': {trie.search('app')}")
print(f"Trie - Starts with 'app': {trie.starts_with('app')}")
print(f"Trie - Starts with 'ban': {trie.starts_with('ban')}")
```
### Algorithmic Paradigms
```python
# Knuth-Morris-Pratt (KMP) string searching
from dsaedge.algorithmic_paradigms.kmp_search import kmp_search
text = "ABABDABACDABABCABAB"
pattern = "ABABCABAB"
occurrences = kmp_search(text, pattern)
print(f"KMP Search - Pattern found at indices: {occurrences}")
# 0/1 Knapsack Problem
from dsaedge.algorithmic_paradigms.knapsack_problem import knapsack_01
weights = [1, 2, 3, 8, 7]
values = [20, 5, 10, 40, 15]
capacity = 10
max_value = knapsack_01(weights, values, capacity)
print(f"Knapsack Problem - Maximum value: {max_value}")
# Longest Common Subsequence (LCS)
from dsaedge.algorithmic_paradigms.longest_common_subsequence import longest_common_subsequence, reconstruct_lcs
s1 = "AGGTAB"
s2 = "GXTXAYB"
lcs_length = longest_common_subsequence(s1, s2)
lcs_string = reconstruct_lcs(s1, s2)
print(f"LCS - Length: {lcs_length}, Subsequence: {lcs_string}")
# N-Queens Problem
from dsaedge.algorithmic_paradigms.n_queens import solve_n_queens
n_queens_solutions = solve_n_queens(4)
print(f"N-Queens Problem - Solutions for N=4: {len(n_queens_solutions)}")
for sol in n_queens_solutions:
for row in sol:
print(row)
print()
# Sudoku Solver
from dsaedge.algorithmic_paradigms.sudoku_solver import solve_sudoku, print_board
sudoku_board = [
[5,3,0,0,7,0,0,0,0],
[6,0,0,1,9,5,0,0,0],
[0,9,8,0,0,0,0,6,0],
[8,0,0,0,6,0,0,0,3],
[4,0,0,8,0,3,0,0,1],
[7,0,0,0,2,0,0,0,6],
[0,6,0,0,0,0,2,8,0],
[0,0,0,4,1,9,0,0,5],
[0,0,0,0,8,0,0,7,9]
]
print("Sudoku Solver - Original Board:")
print_board(sudoku_board)
if solve_sudoku(sudoku_board):
print("
Sudoku Solver - Solved Board:")
print_board(sudoku_board)
else:
print("
Sudoku Solver - No solution exists.")
```
### Graphs
```python
# Bellman-Ford Algorithm
from dsaedge.graphs.bellman_ford import Graph as BellmanFordGraph, bellman_ford
g_bf = BellmanFordGraph(5)
g_bf.add_edge(0, 1, -1)
g_bf.add_edge(0, 2, 4)
g_bf.add_edge(1, 2, 3)
g_bf.add_edge(1, 3, 2)
g_bf.add_edge(1, 4, 2)
g_bf.add_edge(3, 2, 5)
g_bf.add_edge(3, 1, 1)
g_bf.add_edge(4, 3, -3)
distances_bf, predecessors_bf, has_negative_cycle = bellman_ford(g_bf, 0)
print(f"Bellman-Ford - Distances from source 0: {distances_bf}")
print(f"Bellman-Ford - Has negative cycle: {has_negative_cycle}")
# Floyd-Warshall Algorithm
from dsaedge.graphs.floyd_warshall import floyd_warshall
INF = float('inf')
graph_fw = [
[0, 5, INF, 10],
[INF, 0, 3, INF],
[INF, INF, 0, 1],
[INF, INF, INF, 0]
]
distances_fw = floyd_warshall(graph_fw)
print(f"Floyd-Warshall - All-pairs shortest paths: {distances_fw}")
# Graph Representation (Adjacency List) and Algorithms (BFS, DFS, Dijkstra, Prim)
from dsaedge.graphs.graph_representation import Graph as AdjListGraph
g_adj = AdjListGraph()
g_adj.add_edge('A', 'B', 1)
g_adj.add_edge('A', 'C', 4)
g_adj.add_edge('B', 'C', 2)
g_adj.add_edge('B', 'D', 5)
g_adj.add_edge('C', 'D', 1)
print(f"Graph Representation - BFS from A: {g_adj.bfs('A')}")
print(f"Graph Representation - DFS from A: {g_adj.dfs('A')}")
distances_dijkstra, _ = g_adj.dijkstra('A')
print(f"Graph Representation - Dijkstra distances from A: {distances_dijkstra}")
mst_cost, mst_edges = g_adj.prims_algorithm('A')
print(f"Graph Representation - Prim's MST cost: {mst_cost}, Edges: {mst_edges}")
# Kruskal's Algorithm
from dsaedge.graphs.kruskal_algorithm import kruskal_algorithm
vertices_kruskal = ['A', 'B', 'C', 'D', 'E']
edges_kruskal = [
(1, 'A', 'B'), (4, 'A', 'C'), (2, 'B', 'C'),
(5, 'B', 'D'), (1, 'C', 'D'), (3, 'D', 'E')
]
mst_cost_kruskal, mst_edges_kruskal = kruskal_algorithm(vertices_kruskal, edges_kruskal)
print(f"Kruskal's Algorithm - MST cost: {mst_cost_kruskal}, Edges: {mst_edges_kruskal}")
# Topological Sort
from dsaedge.graphs.topological_sort import Graph as TopologicalGraph, topological_sort
g_ts = TopologicalGraph(6)
g_ts.add_edge(5, 2)
g_ts.add_edge(5, 0)
g_ts.add_edge(4, 0)
g_ts.add_edge(4, 1)
g_ts.add_edge(2, 3)
g_ts.add_edge(3, 1)
top_order = topological_sort(g_ts)
print(f"Topological Sort - Order: {top_order}")
```
### Hash Tables
```python
# Hash Table
from dsaedge.hash_tables.hash_table import HashTable
ht = HashTable()
ht.set("name", "Alice")
ht.set("age", 30)
ht["city"] = "New York" # Using dictionary-style assignment
print(f"Hash Table - Name: {ht.get('name')}")
print(f"Hash Table - City: {ht['city']}")
try:
print(f"Hash Table - Occupation: {ht.get('occupation')}")
except KeyError as e:
print(f"Hash Table - Error: {e}")
del ht["age"] # Using dictionary-style deletion
print(f"Hash Table - After deleting age: {ht}")
```
### Heaps
```python
# Min-Heap
from dsaedge.heaps.min_heap import MinHeap
min_heap = MinHeap()
min_heap.insert(3)
min_heap.insert(1)
min_heap.insert(4)
min_heap.insert(1)
min_heap.insert(5)
print(f"Min-Heap - Min element: {min_heap.get_min()}")
print(f"Min-Heap - Extracted min: {min_heap.extract_min()}")
print(f"Min-Heap - New min element: {min_heap.get_min()}")
print(f"Min-Heap - Is empty: {min_heap.is_empty()}")
print(f"Min-Heap - Size: {min_heap.size()}")
```
### Linked Lists
```python
# Circular Singly Linked List
from dsaedge.linked_lists.circular_singly_linked_list import CircularSinglyLinkedList
csll = CircularSinglyLinkedList()
csll.append(1)
csll.append(2)
csll.prepend(0)
print(f"Circular Singly Linked List: {csll}")
csll.delete(1)
print(f"Circular Singly Linked List after deleting 1: {csll}")
print(f"Circular Singly Linked List - Search 0: {csll.search(0).data if csll.search(0) else None}")
# Doubly Linked List
from dsaedge.linked_lists.doubly_linked_list import DoublyLinkedList
dll = DoublyLinkedList()
dll.append(1)
dll.prepend(0)
dll.insert_at_position(2, 2)
print(f"Doubly Linked List: {dll}")
dll.delete(1)
print(f"Doubly Linked List after deleting 1: {dll}")
print(f"Doubly Linked List (reverse): {dll.print_reverse()}")
# Singly Linked List
from dsaedge.linked_lists.singly_linked_list import LinkedList
sll = LinkedList()
sll.append(10)
sll.prepend(5)
sll.insert_at_position(7, 1)
print(f"Singly Linked List: {sll}")
sll.delete(7)
print(f"Singly Linked List after deleting 7: {sll}")
print(f"Singly Linked List - Length: {len(sll)}")
```
### Searching
```python
# Searching Algorithms
from dsaedge.searching.searching_algorithms import linear_search, binary_search, binary_search_recursive
arr_search = [1, 5, 2, 8, 3, 9, 4]
target_linear = 8
print(f"Linear Search - Index of {target_linear}: {linear_search(arr_search, target_linear)}")
arr_sorted = [1, 2, 3, 4, 5, 8, 9]
target_binary = 4
print(f"Binary Search (Iterative) - Index of {target_binary}: {binary_search(arr_sorted, target_binary)}")
print(f"Binary Search (Recursive) - Index of {target_binary}: {binary_search_recursive(arr_sorted, 0, len(arr_sorted) - 1, target_binary)}")
```
### Sorting
```python
# Sorting Algorithms
from dsaedge.sorting.bubble_sort import bubble_sort
from dsaedge.sorting.heap_sort import heap_sort
from dsaedge.sorting.insertion_sort import insertion_sort
from dsaedge.sorting.merge_sort import merge_sort
from dsaedge.sorting.quick_sort import quick_sort
from dsaedge.sorting.selection_sort import selection_sort
arr_sort = [64, 34, 25, 12, 22, 11, 90]
print(f"Bubble Sort: {bubble_sort(arr_sort[:])}")
print(f"Heap Sort: {heap_sort(arr_sort[:])}")
print(f"Insertion Sort: {insertion_sort(arr_sort[:])}")
print(f"Merge Sort: {merge_sort(arr_sort[:])}")
print(f"Quick Sort: {quick_sort(arr_sort[:])}")
print(f"Selection Sort: {selection_sort(arr_sort[:])}")
```
### Trees
```python
# AVL Tree
from dsaedge.trees.avl_tree import AVLTree
avl = AVLTree()
avl.insert(10)
avl.insert(20)
avl.insert(30)
avl.insert(40)
avl.insert(50)
avl.insert(25)
print(f"AVL Tree - In-order traversal: {avl.in_order_traversal()}")
avl.delete(30)
print(f"AVL Tree - In-order traversal after deleting 30: {avl.in_order_traversal()}")
# Binary Search Tree (BST)
from dsaedge.trees.binary_search_tree import BinarySearchTree
bst = BinarySearchTree()
bst.insert(50)
bst.insert(30)
bst.insert(70)
bst.insert(20)
bst.insert(40)
bst.insert(60)
bst.insert(80)
print(f"BST - Search 40: {bst.search(40).data if bst.search(40) else None}")
bst.delete(30)
print(f"BST - In-order traversal after deleting 30: {bst.in_order_traversal()}")
# Binary Tree
from dsaedge.trees.binary_tree import BinaryTree, Node
bt = BinaryTree(1)
bt.root.left = Node(2)
bt.root.right = Node(3)
bt.root.left.left = Node(4)
bt.root.left.right = Node(5)
print(f"Binary Tree - Pre-order traversal: {bt.pre_order_traversal()}")
print(f"Binary Tree - In-order traversal: {bt.in_order_traversal()}")
print(f"Binary Tree - Post-order traversal: {bt.post_order_traversal()}")
print(f"Binary Tree - Level-order traversal: {bt.level_order_traversal()}")
```
## Implemented Data Structures and Algorithms
The `dsaedge` package is organized into several modules, each focusing on a specific category of data structures or algorithms.
### Data Structures
* **`advanced_data_structures`**
* `disjoint_set_union.py`: Disjoint Set Union (DSU) with `make_set`, `find`, and `union` operations.
* `fenwick_tree.py`: Fenwick Tree (Binary Indexed Tree) with `update`, `query`, and `range_query` operations.
* `segment_tree.py`: Segment Tree with `build`, `query`, and `update` operations.
* `trie.py`: Trie (Prefix Tree) with `insert`, `search`, and `starts_with` operations.
* **`hash_tables`**
* `hash_table.py`: Hash Table with chaining, supporting `set`, `get`, and `delete` operations.
* **`heaps`**
* `min_heap.py`: Min-Heap with `insert`, `extract_min`, `get_min`, `is_empty`, and `size` operations.
* **`linked_lists`**
* `circular_singly_linked_list.py`: Circular Singly Linked List with `append`, `prepend`, `delete`, `search`, `is_empty`, `__len__`, and `__str__` operations.
* `doubly_linked_list.py`: Doubly Linked List with `append`, `prepend`, `insert_at_position`, `delete`, `search`, `is_empty`, `__len__`, `__str__`, and `print_reverse` operations.
* `singly_linked_list.py`: Singly Linked List with `append`, `prepend`, `insert_at_position`, `delete`, `search`, `is_empty`, `__len__`, and `__str__` operations.
* **`trees`**
* `avl_tree.py`: AVL Tree with `insert`, `delete`, and `in_order_traversal` operations.
* `binary_search_tree.py`: Binary Search Tree (BST) with `insert`, `search`, `delete`, and `in_order_traversal` operations.
* `binary_tree.py`: Generic Binary Tree with `pre_order_traversal`, `in_order_traversal`, `post_order_traversal`, and `level_order_traversal` operations.
### Algorithms
* **`algorithmic_paradigms`**
* `kmp_search.py`: Knuth-Morris-Pratt (KMP) string searching algorithm.
* `knapsack_problem.py`: 0/1 Knapsack problem solver using dynamic programming.
* `longest_common_subsequence.py`: Longest Common Subsequence (LCS) length and reconstruction using dynamic programming.
* `n_queens.py`: N-Queens Problem solver using backtracking.
* `sudoku_solver.py`: Sudoku Solver using backtracking.
* **`graphs`**
* `bellman_ford.py`: Bellman-Ford algorithm for shortest paths and negative cycle detection.
* `floyd_warshall.py`: Floyd-Warshall algorithm for all-pairs shortest paths.
* `graph_representation.py`: Graph Representation (Adjacency List) with BFS, DFS, Dijkstra's, and Prim's algorithms.
* `kruskal_algorithm.py`: Kruskal's algorithm for Minimum Spanning Tree (MST).
* `topological_sort.py`: Topological Sort using Kahn's algorithm.
* **`searching`**
* `searching_algorithms.py`: Linear Search, Binary Search (iterative and recursive).
* **`sorting`**
* `bubble_sort.py`: Bubble Sort.
* `heap_sort.py`: Heap Sort.
* `insertion_sort.py`: Insertion Sort.
* `merge_sort.py`: Merge Sort.
* `quick_sort.py`: Quick Sort.
* `selection_sort.py`: Selection Sort.
## Contributing
Contributions are welcome! Please feel free to open issues or submit pull requests.
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
Raw data
{
"_id": null,
"home_page": "https://github.com/thiyagarajan2002/dsaedge",
"name": "dsaedge",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "data structures algorithms python linked list tree graph sort search dynamic programming backtracking",
"author": "Thiyagarajan",
"author_email": "trj08012002@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/3d/fd/4f54c87866bb594e9ed4c7d76bf9baae1d66086819488136c516ba2af7e4/dsaedge-0.4.0.tar.gz",
"platform": null,
"description": "# dsaedge: Data Structures and Algorithms in Python\n\nA comprehensive collection of various data structures and algorithms implemented in Python.\n\n## Installation\n\nYou can install this package using pip:\n\n```bash\npip install dsaedge\n```\n\n## Usage\n\nHere are some examples of how to use the implemented data structures and algorithms:\n\n### Advanced Data Structures\n\n```python\n# Disjoint Set Union (DSU)\nfrom dsaedge.advanced_data_structures.disjoint_set_union import DSU\n\ndsu = DSU()\ndsu.make_set(1)\ndsu.make_set(2)\ndsu.make_set(3)\ndsu.union(1, 2)\nprint(f\"DSU - Find(1): {dsu.find(1)}\")\nprint(f\"DSU - Find(2): {dsu.find(2)}\")\nprint(f\"DSU - Are 1 and 3 in the same set? {dsu.find(1) == dsu.find(3)}\")\n\n# Fenwick Tree (Binary Indexed Tree)\nfrom dsaedge.advanced_data_structures.fenwick_tree import FenwickTree\n\nft = FenwickTree(10)\nft.update(0, 5) # Add 5 to index 0\nft.update(4, 3) # Add 3 to index 4\nprint(f\"Fenwick Tree - Sum up to index 0: {ft.query(0)}\")\nprint(f\"Fenwick Tree - Sum up to index 4: {ft.query(4)}\")\nprint(f\"Fenwick Tree - Sum in range [0, 4]: {ft.range_query(0, 4)}\")\n\n# Segment Tree\nfrom dsaedge.advanced_data_structures.segment_tree import SegmentTree\n\narr_seg = [1, 3, 5, 7, 9, 11]\nst = SegmentTree(arr_seg)\nprint(f\"Segment Tree - Sum of range [1, 4]: {st.query(1, 4)}\")\nst.update(2, 10) # Update index 2 to 10\nprint(f\"Segment Tree - Sum of range [1, 4] after update: {st.query(1, 4)}\")\n\n# Trie (Prefix Tree)\nfrom dsaedge.advanced_data_structures.trie import Trie\n\ntrie = Trie()\ntrie.insert(\"apple\")\ntrie.insert(\"apricot\")\nprint(f\"Trie - Search 'apple': {trie.search('apple')}\")\nprint(f\"Trie - Search 'app': {trie.search('app')}\")\nprint(f\"Trie - Starts with 'app': {trie.starts_with('app')}\")\nprint(f\"Trie - Starts with 'ban': {trie.starts_with('ban')}\")\n```\n\n### Algorithmic Paradigms\n\n```python\n# Knuth-Morris-Pratt (KMP) string searching\nfrom dsaedge.algorithmic_paradigms.kmp_search import kmp_search\n\ntext = \"ABABDABACDABABCABAB\"\npattern = \"ABABCABAB\"\noccurrences = kmp_search(text, pattern)\nprint(f\"KMP Search - Pattern found at indices: {occurrences}\")\n\n# 0/1 Knapsack Problem\nfrom dsaedge.algorithmic_paradigms.knapsack_problem import knapsack_01\n\nweights = [1, 2, 3, 8, 7]\nvalues = [20, 5, 10, 40, 15]\ncapacity = 10\nmax_value = knapsack_01(weights, values, capacity)\nprint(f\"Knapsack Problem - Maximum value: {max_value}\")\n\n# Longest Common Subsequence (LCS)\nfrom dsaedge.algorithmic_paradigms.longest_common_subsequence import longest_common_subsequence, reconstruct_lcs\n\ns1 = \"AGGTAB\"\ns2 = \"GXTXAYB\"\nlcs_length = longest_common_subsequence(s1, s2)\nlcs_string = reconstruct_lcs(s1, s2)\nprint(f\"LCS - Length: {lcs_length}, Subsequence: {lcs_string}\")\n\n# N-Queens Problem\nfrom dsaedge.algorithmic_paradigms.n_queens import solve_n_queens\n\nn_queens_solutions = solve_n_queens(4)\nprint(f\"N-Queens Problem - Solutions for N=4: {len(n_queens_solutions)}\")\nfor sol in n_queens_solutions:\n for row in sol:\n print(row)\n print()\n\n# Sudoku Solver\nfrom dsaedge.algorithmic_paradigms.sudoku_solver import solve_sudoku, print_board\n\nsudoku_board = [\n [5,3,0,0,7,0,0,0,0],\n [6,0,0,1,9,5,0,0,0],\n [0,9,8,0,0,0,0,6,0],\n [8,0,0,0,6,0,0,0,3],\n [4,0,0,8,0,3,0,0,1],\n [7,0,0,0,2,0,0,0,6],\n [0,6,0,0,0,0,2,8,0],\n [0,0,0,4,1,9,0,0,5],\n [0,0,0,0,8,0,0,7,9]\n]\nprint(\"Sudoku Solver - Original Board:\")\nprint_board(sudoku_board)\nif solve_sudoku(sudoku_board):\n print(\"\nSudoku Solver - Solved Board:\")\n print_board(sudoku_board)\nelse:\n print(\"\nSudoku Solver - No solution exists.\")\n```\n\n### Graphs\n\n```python\n# Bellman-Ford Algorithm\nfrom dsaedge.graphs.bellman_ford import Graph as BellmanFordGraph, bellman_ford\n\ng_bf = BellmanFordGraph(5)\ng_bf.add_edge(0, 1, -1)\ng_bf.add_edge(0, 2, 4)\ng_bf.add_edge(1, 2, 3)\ng_bf.add_edge(1, 3, 2)\ng_bf.add_edge(1, 4, 2)\ng_bf.add_edge(3, 2, 5)\ng_bf.add_edge(3, 1, 1)\ng_bf.add_edge(4, 3, -3)\n\ndistances_bf, predecessors_bf, has_negative_cycle = bellman_ford(g_bf, 0)\nprint(f\"Bellman-Ford - Distances from source 0: {distances_bf}\")\nprint(f\"Bellman-Ford - Has negative cycle: {has_negative_cycle}\")\n\n# Floyd-Warshall Algorithm\nfrom dsaedge.graphs.floyd_warshall import floyd_warshall\n\nINF = float('inf')\ngraph_fw = [\n [0, 5, INF, 10],\n [INF, 0, 3, INF],\n [INF, INF, 0, 1],\n [INF, INF, INF, 0]\n]\ndistances_fw = floyd_warshall(graph_fw)\nprint(f\"Floyd-Warshall - All-pairs shortest paths: {distances_fw}\")\n\n# Graph Representation (Adjacency List) and Algorithms (BFS, DFS, Dijkstra, Prim)\nfrom dsaedge.graphs.graph_representation import Graph as AdjListGraph\n\ng_adj = AdjListGraph()\ng_adj.add_edge('A', 'B', 1)\ng_adj.add_edge('A', 'C', 4)\ng_adj.add_edge('B', 'C', 2)\ng_adj.add_edge('B', 'D', 5)\ng_adj.add_edge('C', 'D', 1)\n\nprint(f\"Graph Representation - BFS from A: {g_adj.bfs('A')}\")\nprint(f\"Graph Representation - DFS from A: {g_adj.dfs('A')}\")\n\ndistances_dijkstra, _ = g_adj.dijkstra('A')\nprint(f\"Graph Representation - Dijkstra distances from A: {distances_dijkstra}\")\n\nmst_cost, mst_edges = g_adj.prims_algorithm('A')\nprint(f\"Graph Representation - Prim's MST cost: {mst_cost}, Edges: {mst_edges}\")\n\n# Kruskal's Algorithm\nfrom dsaedge.graphs.kruskal_algorithm import kruskal_algorithm\n\nvertices_kruskal = ['A', 'B', 'C', 'D', 'E']\nedges_kruskal = [\n (1, 'A', 'B'), (4, 'A', 'C'), (2, 'B', 'C'),\n (5, 'B', 'D'), (1, 'C', 'D'), (3, 'D', 'E')\n]\nmst_cost_kruskal, mst_edges_kruskal = kruskal_algorithm(vertices_kruskal, edges_kruskal)\nprint(f\"Kruskal's Algorithm - MST cost: {mst_cost_kruskal}, Edges: {mst_edges_kruskal}\")\n\n# Topological Sort\nfrom dsaedge.graphs.topological_sort import Graph as TopologicalGraph, topological_sort\n\ng_ts = TopologicalGraph(6)\ng_ts.add_edge(5, 2)\ng_ts.add_edge(5, 0)\ng_ts.add_edge(4, 0)\ng_ts.add_edge(4, 1)\ng_ts.add_edge(2, 3)\ng_ts.add_edge(3, 1)\n\ntop_order = topological_sort(g_ts)\nprint(f\"Topological Sort - Order: {top_order}\")\n```\n\n### Hash Tables\n\n```python\n# Hash Table\nfrom dsaedge.hash_tables.hash_table import HashTable\n\nht = HashTable()\nht.set(\"name\", \"Alice\")\nht.set(\"age\", 30)\nht[\"city\"] = \"New York\" # Using dictionary-style assignment\n\nprint(f\"Hash Table - Name: {ht.get('name')}\")\nprint(f\"Hash Table - City: {ht['city']}\")\n\ntry:\n print(f\"Hash Table - Occupation: {ht.get('occupation')}\")\nexcept KeyError as e:\n print(f\"Hash Table - Error: {e}\")\n\ndel ht[\"age\"] # Using dictionary-style deletion\nprint(f\"Hash Table - After deleting age: {ht}\")\n```\n\n### Heaps\n\n```python\n# Min-Heap\nfrom dsaedge.heaps.min_heap import MinHeap\n\nmin_heap = MinHeap()\nmin_heap.insert(3)\nmin_heap.insert(1)\nmin_heap.insert(4)\nmin_heap.insert(1)\nmin_heap.insert(5)\n\nprint(f\"Min-Heap - Min element: {min_heap.get_min()}\")\nprint(f\"Min-Heap - Extracted min: {min_heap.extract_min()}\")\nprint(f\"Min-Heap - New min element: {min_heap.get_min()}\")\nprint(f\"Min-Heap - Is empty: {min_heap.is_empty()}\")\nprint(f\"Min-Heap - Size: {min_heap.size()}\")\n```\n\n### Linked Lists\n\n```python\n# Circular Singly Linked List\nfrom dsaedge.linked_lists.circular_singly_linked_list import CircularSinglyLinkedList\n\ncsll = CircularSinglyLinkedList()\ncsll.append(1)\ncsll.append(2)\ncsll.prepend(0)\nprint(f\"Circular Singly Linked List: {csll}\")\ncsll.delete(1)\nprint(f\"Circular Singly Linked List after deleting 1: {csll}\")\nprint(f\"Circular Singly Linked List - Search 0: {csll.search(0).data if csll.search(0) else None}\")\n\n# Doubly Linked List\nfrom dsaedge.linked_lists.doubly_linked_list import DoublyLinkedList\n\ndll = DoublyLinkedList()\ndll.append(1)\ndll.prepend(0)\ndll.insert_at_position(2, 2)\nprint(f\"Doubly Linked List: {dll}\")\ndll.delete(1)\nprint(f\"Doubly Linked List after deleting 1: {dll}\")\nprint(f\"Doubly Linked List (reverse): {dll.print_reverse()}\")\n\n# Singly Linked List\nfrom dsaedge.linked_lists.singly_linked_list import LinkedList\n\nsll = LinkedList()\nsll.append(10)\nsll.prepend(5)\nsll.insert_at_position(7, 1)\nprint(f\"Singly Linked List: {sll}\")\nsll.delete(7)\nprint(f\"Singly Linked List after deleting 7: {sll}\")\nprint(f\"Singly Linked List - Length: {len(sll)}\")\n```\n\n### Searching\n\n```python\n# Searching Algorithms\nfrom dsaedge.searching.searching_algorithms import linear_search, binary_search, binary_search_recursive\n\narr_search = [1, 5, 2, 8, 3, 9, 4]\ntarget_linear = 8\nprint(f\"Linear Search - Index of {target_linear}: {linear_search(arr_search, target_linear)}\")\n\narr_sorted = [1, 2, 3, 4, 5, 8, 9]\ntarget_binary = 4\nprint(f\"Binary Search (Iterative) - Index of {target_binary}: {binary_search(arr_sorted, target_binary)}\")\nprint(f\"Binary Search (Recursive) - Index of {target_binary}: {binary_search_recursive(arr_sorted, 0, len(arr_sorted) - 1, target_binary)}\")\n```\n\n### Sorting\n\n```python\n# Sorting Algorithms\nfrom dsaedge.sorting.bubble_sort import bubble_sort\nfrom dsaedge.sorting.heap_sort import heap_sort\nfrom dsaedge.sorting.insertion_sort import insertion_sort\nfrom dsaedge.sorting.merge_sort import merge_sort\nfrom dsaedge.sorting.quick_sort import quick_sort\nfrom dsaedge.sorting.selection_sort import selection_sort\n\narr_sort = [64, 34, 25, 12, 22, 11, 90]\n\nprint(f\"Bubble Sort: {bubble_sort(arr_sort[:])}\")\nprint(f\"Heap Sort: {heap_sort(arr_sort[:])}\")\nprint(f\"Insertion Sort: {insertion_sort(arr_sort[:])}\")\nprint(f\"Merge Sort: {merge_sort(arr_sort[:])}\")\nprint(f\"Quick Sort: {quick_sort(arr_sort[:])}\")\nprint(f\"Selection Sort: {selection_sort(arr_sort[:])}\")\n```\n\n### Trees\n\n```python\n# AVL Tree\nfrom dsaedge.trees.avl_tree import AVLTree\n\navl = AVLTree()\navl.insert(10)\navl.insert(20)\navl.insert(30)\navl.insert(40)\navl.insert(50)\navl.insert(25)\nprint(f\"AVL Tree - In-order traversal: {avl.in_order_traversal()}\")\navl.delete(30)\nprint(f\"AVL Tree - In-order traversal after deleting 30: {avl.in_order_traversal()}\")\n\n# Binary Search Tree (BST)\nfrom dsaedge.trees.binary_search_tree import BinarySearchTree\n\nbst = BinarySearchTree()\nbst.insert(50)\nbst.insert(30)\nbst.insert(70)\nbst.insert(20)\nbst.insert(40)\nbst.insert(60)\nbst.insert(80)\nprint(f\"BST - Search 40: {bst.search(40).data if bst.search(40) else None}\")\nbst.delete(30)\nprint(f\"BST - In-order traversal after deleting 30: {bst.in_order_traversal()}\")\n\n# Binary Tree\nfrom dsaedge.trees.binary_tree import BinaryTree, Node\n\nbt = BinaryTree(1)\nbt.root.left = Node(2)\nbt.root.right = Node(3)\nbt.root.left.left = Node(4)\nbt.root.left.right = Node(5)\n\nprint(f\"Binary Tree - Pre-order traversal: {bt.pre_order_traversal()}\")\nprint(f\"Binary Tree - In-order traversal: {bt.in_order_traversal()}\")\nprint(f\"Binary Tree - Post-order traversal: {bt.post_order_traversal()}\")\nprint(f\"Binary Tree - Level-order traversal: {bt.level_order_traversal()}\")\n```\n\n## Implemented Data Structures and Algorithms\n\nThe `dsaedge` package is organized into several modules, each focusing on a specific category of data structures or algorithms.\n\n### Data Structures\n\n* **`advanced_data_structures`**\n * `disjoint_set_union.py`: Disjoint Set Union (DSU) with `make_set`, `find`, and `union` operations.\n * `fenwick_tree.py`: Fenwick Tree (Binary Indexed Tree) with `update`, `query`, and `range_query` operations.\n * `segment_tree.py`: Segment Tree with `build`, `query`, and `update` operations.\n * `trie.py`: Trie (Prefix Tree) with `insert`, `search`, and `starts_with` operations.\n* **`hash_tables`**\n * `hash_table.py`: Hash Table with chaining, supporting `set`, `get`, and `delete` operations.\n* **`heaps`**\n * `min_heap.py`: Min-Heap with `insert`, `extract_min`, `get_min`, `is_empty`, and `size` operations.\n* **`linked_lists`**\n * `circular_singly_linked_list.py`: Circular Singly Linked List with `append`, `prepend`, `delete`, `search`, `is_empty`, `__len__`, and `__str__` operations.\n * `doubly_linked_list.py`: Doubly Linked List with `append`, `prepend`, `insert_at_position`, `delete`, `search`, `is_empty`, `__len__`, `__str__`, and `print_reverse` operations.\n * `singly_linked_list.py`: Singly Linked List with `append`, `prepend`, `insert_at_position`, `delete`, `search`, `is_empty`, `__len__`, and `__str__` operations.\n* **`trees`**\n * `avl_tree.py`: AVL Tree with `insert`, `delete`, and `in_order_traversal` operations.\n * `binary_search_tree.py`: Binary Search Tree (BST) with `insert`, `search`, `delete`, and `in_order_traversal` operations.\n * `binary_tree.py`: Generic Binary Tree with `pre_order_traversal`, `in_order_traversal`, `post_order_traversal`, and `level_order_traversal` operations.\n\n### Algorithms\n\n* **`algorithmic_paradigms`**\n * `kmp_search.py`: Knuth-Morris-Pratt (KMP) string searching algorithm.\n * `knapsack_problem.py`: 0/1 Knapsack problem solver using dynamic programming.\n * `longest_common_subsequence.py`: Longest Common Subsequence (LCS) length and reconstruction using dynamic programming.\n * `n_queens.py`: N-Queens Problem solver using backtracking.\n * `sudoku_solver.py`: Sudoku Solver using backtracking.\n* **`graphs`**\n * `bellman_ford.py`: Bellman-Ford algorithm for shortest paths and negative cycle detection.\n * `floyd_warshall.py`: Floyd-Warshall algorithm for all-pairs shortest paths.\n * `graph_representation.py`: Graph Representation (Adjacency List) with BFS, DFS, Dijkstra's, and Prim's algorithms.\n * `kruskal_algorithm.py`: Kruskal's algorithm for Minimum Spanning Tree (MST).\n * `topological_sort.py`: Topological Sort using Kahn's algorithm.\n* **`searching`**\n * `searching_algorithms.py`: Linear Search, Binary Search (iterative and recursive).\n* **`sorting`**\n * `bubble_sort.py`: Bubble Sort.\n * `heap_sort.py`: Heap Sort.\n * `insertion_sort.py`: Insertion Sort.\n * `merge_sort.py`: Merge Sort.\n * `quick_sort.py`: Quick Sort.\n * `selection_sort.py`: Selection Sort.\n\n## Contributing\n\nContributions are welcome! Please feel free to open issues or submit pull requests.\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n",
"bugtrack_url": null,
"license": null,
"summary": "A comprehensive Python package for various data structures and algorithms implementations.",
"version": "0.4.0",
"project_urls": {
"Homepage": "https://github.com/thiyagarajan2002/dsaedge"
},
"split_keywords": [
"data",
"structures",
"algorithms",
"python",
"linked",
"list",
"tree",
"graph",
"sort",
"search",
"dynamic",
"programming",
"backtracking"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "588b96754d381646ad571f4f8a0bfcda76959052b50e0dcefaca3a6f9c9d7d9e",
"md5": "b75f0881dbdbec44bd884087684efec3",
"sha256": "bf6d0161229bdce0d8e731256d662c177635c5e4bf8a9aef9e7c5eb00e2a56aa"
},
"downloads": -1,
"filename": "dsaedge-0.4.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b75f0881dbdbec44bd884087684efec3",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 34475,
"upload_time": "2025-07-08T10:44:08",
"upload_time_iso_8601": "2025-07-08T10:44:08.547924Z",
"url": "https://files.pythonhosted.org/packages/58/8b/96754d381646ad571f4f8a0bfcda76959052b50e0dcefaca3a6f9c9d7d9e/dsaedge-0.4.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "3dfd4f54c87866bb594e9ed4c7d76bf9baae1d66086819488136c516ba2af7e4",
"md5": "e2cfc6784d6bf63ff388ace0cb9f5693",
"sha256": "e07ec7844214ba2ebf346b2ad2726c8aac526bac174ba445bd8a6ca24d299e4e"
},
"downloads": -1,
"filename": "dsaedge-0.4.0.tar.gz",
"has_sig": false,
"md5_digest": "e2cfc6784d6bf63ff388ace0cb9f5693",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 27894,
"upload_time": "2025-07-08T10:44:12",
"upload_time_iso_8601": "2025-07-08T10:44:12.145816Z",
"url": "https://files.pythonhosted.org/packages/3d/fd/4f54c87866bb594e9ed4c7d76bf9baae1d66086819488136c516ba2af7e4/dsaedge-0.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-08 10:44:12",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "thiyagarajan2002",
"github_project": "dsaedge",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "dsaedge"
}