dsf-quantum-sdk


Namedsf-quantum-sdk JSON
Version 1.0.6 PyPI version JSON
download
home_pagehttps://github.com/jaimeajl/dsf-quantum-sdk
SummaryLightweight SDK for DSF Quantum Adaptive Scoring with IBM Quantum support
upload_time2025-10-23 15:01:56
maintainerNone
docs_urlNone
authorJaime Alexander Jimenez
requires_python>=3.8
licenseNone
keywords quantum quantum computing ibm quantum qiskit adaptive scoring hierarchical evaluation quantum amplitude estimation qae dsf decision support machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # DSF Quantum SDK

Reduce costos y complejidad en evaluación de inferencias cuánticas mediante simulación adaptativa y compilación inteligente.
Ejecuta y valida workloads híbridos 10× más rápido con mínima sobrecarga.

## 🚀 Why DSF Quantum?

Los entornos cuánticos tradicionales requieren acceso costoso a hardware QPU y tiempos de espera prolongados.
DSF Quantum SDK encapsula la lógica de evaluación, simulación y compilación en una capa unificada que permite:

- Simular, evaluar y compilar circuitos cuánticos desde código Python o remoto.
- Reducir pruebas reales en hardware mediante simuladores inteligentes.
- Optimizar pipelines híbridos con inferencias aceleradas en CPU/GPU.

## 📚 Core Concepts

- **Adaptive Simulation** – Ejecuta circuitos cuánticos de forma incremental con reducción adaptativa de ruido.
- **Config-as-topology** – Define tus qubits, compuertas y prioridades en forma declarativa.
- **Quantum Compilation** – Convierte circuitos de alto nivel en representaciones optimizadas (QASM, Tensor, o BinaryGraph).
- **Hybrid Evaluation** – Conecta resultados clásicos y cuánticos dentro de un mismo pipeline.
- **Enterprise**: incluye soporte para "quantum workers" distribuidos y compilación hacia hardware real o simuladores especializados.

## 📦 Installation

```bash
pip install dsf-quantum-sdk
```

Opcionalmente, apunta el SDK hacia tu backend:

```python
import os
from dsf_quantum_sdk import QuantumSDK

sdk = QuantumSDK(
    base_url=os.getenv("DSF_QUANTUM_BASE_URL"),  # e.g. https://dsf-quantum-api.vercel.app
    tier="community"
)
```

## 🎯 Quick Start

### Community

```python
from dsf_quantum_sdk import QuantumSDK

sdk = QuantumSDK()  # tier community por defecto

# Crear un circuito básico
circuit = sdk.create_circuit()
circuit.add_qubit('q0')
circuit.add_gate('H', targets=['q0'])
circuit.add_measure('q0')

# Simular localmente
result = sdk.simulate(circuit)
print("Probabilidades:", result['probabilities'])
```

### Professional

```python
from dsf_quantum_sdk import QuantumSDK

sdk = QuantumSDK(license_key="PRO-2026-12-31-XXXX", tier="professional")

circuit = (sdk.create_circuit()
    .add_qubit('q0')
    .add_qubit('q1')
    .add_gate('H', targets=['q0'])
    .add_gate('CX', targets=['q0','q1'])
    .add_measure('q0')
    .add_measure('q1')
)

# Evaluar en batch (hasta 1000 simulaciones)
experiments = [circuit.to_dict() for _ in range(10)]
scores = sdk.batch_simulate(experiments)
print("Resultados batch:", scores)
```

### Enterprise

```python
from dsf_quantum_sdk import QuantumSDK

sdk = QuantumSDK(license_key="ENT-2026-12-31-XXXX", tier="enterprise")

# Compilación + ejecución híbrida
circuit = (sdk.create_circuit()
    .add_qubit('q0')
    .add_qubit('q1')
    .add_gate('H', targets=['q0'])
    .add_gate('CX', targets=['q0','q1'])
    .add_measure('q0')
    .add_measure('q1')
)

compiled = sdk.compile(circuit, target="qasm")
hybrid_result = sdk.hybrid_run(compiled, classical_inputs={"alpha": 0.7})
print("Resultado híbrido:", hybrid_result)
```

## 🧠 Advanced Pipelines

### Quantum Worker Orchestration (Enterprise)

Permite ejecutar simulaciones o evaluaciones distribuidas en workers configurados en la nube (GCP, AWS, Vercel, etc.):

```python
task = sdk.worker_submit(
    circuit=circuit,
    backend="gcr.io/dsf-quantum-475822/quantum-worker",
    batch_size=50
)
print("Tarea enviada:", task["id"])
```

Puedes monitorear progreso:

```python
status = sdk.worker_status(task["id"])
print(status)
```

## 🔧 Fine-Tuned Recipes

### A) Community — Simple Superposition

```python
circuit = (sdk.create_circuit()
    .add_qubit('q0')
    .add_gate('H', targets=['q0'])
    .add_measure('q0')
)
result = sdk.simulate(circuit)
print(result['probabilities'])
```

### B) Professional — Entanglement Test

```python
circuit = (sdk.create_circuit()
    .add_qubit('q0').add_qubit('q1')
    .add_gate('H', targets=['q0'])
    .add_gate('CX', targets=['q0','q1'])
    .add_measure('q0').add_measure('q1')
)
sim = sdk.batch_simulate([circuit.to_dict()]*100)
print("Promedio correlación:", sum(x["correlation"] for x in sim)/100)
```

### C) Enterprise — Hybrid Workflow

```python
cfg = {"iterations": 3, "noise_level": 0.01}
hybrid = sdk.hybrid_run(circuit, classical_inputs=cfg)
print("Output:", hybrid)
```

## ⚡ Performance Tips

- Usa `batch_simulate()` en lugar de `simulate()` para grandes volúmenes.
- `compile()` puede cachearse para reutilizar topologías.
- Usa `worker_submit()` para ejecutar tareas en paralelo.
- `hybrid_run()` acepta datos clásicos para reducir overhead cuántico.

## 💡 Use Cases

### 1. Quantum Evaluation

Evalúa múltiples variantes de un circuito para analizar estabilidad y fidelidad:

```python
scores = sdk.batch_simulate([circuit.to_dict() for _ in range(500)])
```

### 2. Hybrid Optimization

Integra valores clásicos y cuánticos:

```python
result = sdk.hybrid_run(circuit, classical_inputs={"alpha": 0.5, "beta": 0.9})
```

### 3. Distributed Compilation

Despliega compilaciones pesadas a workers remotos:

```python
sdk.worker_submit(circuit, backend="gcr.io/dsf-quantum-475822/quantum-worker")
```

## 📊 Rate Limits

|      Tier    | Simulations/Day | Batch Size | Worker Jobs | Compilation |
|--------------|-----------------|------------|-------------|-------------|
| Community    |       500       |      ❌    |     ❌     |     ❌      |
| Professional |     ilimitado   |  ✅ ≤1000  |  limitado   |     ✅      |
| Enterprise   |     ilimitado   |  ✅ ≤1000  |     ✅     | ✅ (QPU)     |

## 🆚 Tier Comparison

|       Feature       | Community | Professional | Enterprise |
|---------------------|-----------|--------------|------------|
| Local simulation    |    ✅     |      ✅     |     ✅     |
| Batch simulation    |    ❌     |      ✅     |     ✅     |
| Quantum compilation |    ❌     |      ✅     | ✅ (QPU+)  |
| Hybrid evaluation   |    ❌     |      ✅     |     ✅     |
| Distributed workers |    ❌     |      ❌     |     ✅     |
| Cloud orchestration |    ❌     |      ❌     |     ✅     |

## 📖 API Reference

### Initialization

```python
QuantumSDK(
    tier='community'|'professional'|'enterprise',
    license_key=None,
    base_url=None,
    timeout=30
)
```

### Core Methods

- `create_circuit()` → Crea una nueva topología.
- `simulate(circuit)` → Simula localmente.
- `batch_simulate(circuits)` → Simula múltiples circuitos.
- `compile(circuit, target="qasm"|"binary"|"tensor")` → Compila el circuito.
- `hybrid_run(circuit, classical_inputs)` → Evalúa circuito con datos clásicos.
- `worker_submit(circuit, backend, batch_size)` → Envío distribuido.
- `worker_status(task_id)` → Monitorea progreso.

## ⚠️ Common Errors

|         Código         |           Causa            |            Solución          |
|------------------------|----------------------------|------------------------------|
| 422 Invalid Circuit    | Falta topología o medida   | Añade al menos una medida    |
| 429 Rate Limit         | Excediste el límite diario | Espera o sube de tier        |
| 500 Worker Unavailable | El worker no responde      | Reintenta o usa otro backend |

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/jaimeajl/dsf-quantum-sdk",
    "name": "dsf-quantum-sdk",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "quantum, quantum computing, ibm quantum, qiskit, adaptive scoring, hierarchical evaluation, quantum amplitude estimation, qae, dsf, decision support, machine learning",
    "author": "Jaime Alexander Jimenez",
    "author_email": "contacto@softwarefinanzas.com.co",
    "download_url": "https://files.pythonhosted.org/packages/7d/6c/98108031f1202f375409c90927e127eca91e5fe690ddb5d95a28d7c887f6/dsf_quantum_sdk-1.0.6.tar.gz",
    "platform": null,
    "description": "\ufeff# DSF Quantum SDK\r\n\r\nReduce costos y complejidad en evaluaci\u00f3n de inferencias cu\u00e1nticas mediante simulaci\u00f3n adaptativa y compilaci\u00f3n inteligente.\r\nEjecuta y valida workloads h\u00edbridos 10\u00d7 m\u00e1s r\u00e1pido con m\u00ednima sobrecarga.\r\n\r\n## \ud83d\ude80 Why DSF Quantum?\r\n\r\nLos entornos cu\u00e1nticos tradicionales requieren acceso costoso a hardware QPU y tiempos de espera prolongados.\r\nDSF Quantum SDK encapsula la l\u00f3gica de evaluaci\u00f3n, simulaci\u00f3n y compilaci\u00f3n en una capa unificada que permite:\r\n\r\n- Simular, evaluar y compilar circuitos cu\u00e1nticos desde c\u00f3digo Python o remoto.\r\n- Reducir pruebas reales en hardware mediante simuladores inteligentes.\r\n- Optimizar pipelines h\u00edbridos con inferencias aceleradas en CPU/GPU.\r\n\r\n## \ud83d\udcda Core Concepts\r\n\r\n- **Adaptive Simulation** \u2013 Ejecuta circuitos cu\u00e1nticos de forma incremental con reducci\u00f3n adaptativa de ruido.\r\n- **Config-as-topology** \u2013 Define tus qubits, compuertas y prioridades en forma declarativa.\r\n- **Quantum Compilation** \u2013 Convierte circuitos de alto nivel en representaciones optimizadas (QASM, Tensor, o BinaryGraph).\r\n- **Hybrid Evaluation** \u2013 Conecta resultados cl\u00e1sicos y cu\u00e1nticos dentro de un mismo pipeline.\r\n- **Enterprise**: incluye soporte para \"quantum workers\" distribuidos y compilaci\u00f3n hacia hardware real o simuladores especializados.\r\n\r\n## \ud83d\udce6 Installation\r\n\r\n```bash\r\npip install dsf-quantum-sdk\r\n```\r\n\r\nOpcionalmente, apunta el SDK hacia tu backend:\r\n\r\n```python\r\nimport os\r\nfrom dsf_quantum_sdk import QuantumSDK\r\n\r\nsdk = QuantumSDK(\r\n    base_url=os.getenv(\"DSF_QUANTUM_BASE_URL\"),  # e.g. https://dsf-quantum-api.vercel.app\r\n    tier=\"community\"\r\n)\r\n```\r\n\r\n## \ud83c\udfaf Quick Start\r\n\r\n### Community\r\n\r\n```python\r\nfrom dsf_quantum_sdk import QuantumSDK\r\n\r\nsdk = QuantumSDK()  # tier community por defecto\r\n\r\n# Crear un circuito b\u00e1sico\r\ncircuit = sdk.create_circuit()\r\ncircuit.add_qubit('q0')\r\ncircuit.add_gate('H', targets=['q0'])\r\ncircuit.add_measure('q0')\r\n\r\n# Simular localmente\r\nresult = sdk.simulate(circuit)\r\nprint(\"Probabilidades:\", result['probabilities'])\r\n```\r\n\r\n### Professional\r\n\r\n```python\r\nfrom dsf_quantum_sdk import QuantumSDK\r\n\r\nsdk = QuantumSDK(license_key=\"PRO-2026-12-31-XXXX\", tier=\"professional\")\r\n\r\ncircuit = (sdk.create_circuit()\r\n    .add_qubit('q0')\r\n    .add_qubit('q1')\r\n    .add_gate('H', targets=['q0'])\r\n    .add_gate('CX', targets=['q0','q1'])\r\n    .add_measure('q0')\r\n    .add_measure('q1')\r\n)\r\n\r\n# Evaluar en batch (hasta 1000 simulaciones)\r\nexperiments = [circuit.to_dict() for _ in range(10)]\r\nscores = sdk.batch_simulate(experiments)\r\nprint(\"Resultados batch:\", scores)\r\n```\r\n\r\n### Enterprise\r\n\r\n```python\r\nfrom dsf_quantum_sdk import QuantumSDK\r\n\r\nsdk = QuantumSDK(license_key=\"ENT-2026-12-31-XXXX\", tier=\"enterprise\")\r\n\r\n# Compilaci\u00f3n + ejecuci\u00f3n h\u00edbrida\r\ncircuit = (sdk.create_circuit()\r\n    .add_qubit('q0')\r\n    .add_qubit('q1')\r\n    .add_gate('H', targets=['q0'])\r\n    .add_gate('CX', targets=['q0','q1'])\r\n    .add_measure('q0')\r\n    .add_measure('q1')\r\n)\r\n\r\ncompiled = sdk.compile(circuit, target=\"qasm\")\r\nhybrid_result = sdk.hybrid_run(compiled, classical_inputs={\"alpha\": 0.7})\r\nprint(\"Resultado h\u00edbrido:\", hybrid_result)\r\n```\r\n\r\n## \ud83e\udde0 Advanced Pipelines\r\n\r\n### Quantum Worker Orchestration (Enterprise)\r\n\r\nPermite ejecutar simulaciones o evaluaciones distribuidas en workers configurados en la nube (GCP, AWS, Vercel, etc.):\r\n\r\n```python\r\ntask = sdk.worker_submit(\r\n    circuit=circuit,\r\n    backend=\"gcr.io/dsf-quantum-475822/quantum-worker\",\r\n    batch_size=50\r\n)\r\nprint(\"Tarea enviada:\", task[\"id\"])\r\n```\r\n\r\nPuedes monitorear progreso:\r\n\r\n```python\r\nstatus = sdk.worker_status(task[\"id\"])\r\nprint(status)\r\n```\r\n\r\n## \ud83d\udd27 Fine-Tuned Recipes\r\n\r\n### A) Community \u2014 Simple Superposition\r\n\r\n```python\r\ncircuit = (sdk.create_circuit()\r\n    .add_qubit('q0')\r\n    .add_gate('H', targets=['q0'])\r\n    .add_measure('q0')\r\n)\r\nresult = sdk.simulate(circuit)\r\nprint(result['probabilities'])\r\n```\r\n\r\n### B) Professional \u2014 Entanglement Test\r\n\r\n```python\r\ncircuit = (sdk.create_circuit()\r\n    .add_qubit('q0').add_qubit('q1')\r\n    .add_gate('H', targets=['q0'])\r\n    .add_gate('CX', targets=['q0','q1'])\r\n    .add_measure('q0').add_measure('q1')\r\n)\r\nsim = sdk.batch_simulate([circuit.to_dict()]*100)\r\nprint(\"Promedio correlaci\u00f3n:\", sum(x[\"correlation\"] for x in sim)/100)\r\n```\r\n\r\n### C) Enterprise \u2014 Hybrid Workflow\r\n\r\n```python\r\ncfg = {\"iterations\": 3, \"noise_level\": 0.01}\r\nhybrid = sdk.hybrid_run(circuit, classical_inputs=cfg)\r\nprint(\"Output:\", hybrid)\r\n```\r\n\r\n## \u26a1 Performance Tips\r\n\r\n- Usa `batch_simulate()` en lugar de `simulate()` para grandes vol\u00famenes.\r\n- `compile()` puede cachearse para reutilizar topolog\u00edas.\r\n- Usa `worker_submit()` para ejecutar tareas en paralelo.\r\n- `hybrid_run()` acepta datos cl\u00e1sicos para reducir overhead cu\u00e1ntico.\r\n\r\n## \ud83d\udca1 Use Cases\r\n\r\n### 1. Quantum Evaluation\r\n\r\nEval\u00faa m\u00faltiples variantes de un circuito para analizar estabilidad y fidelidad:\r\n\r\n```python\r\nscores = sdk.batch_simulate([circuit.to_dict() for _ in range(500)])\r\n```\r\n\r\n### 2. Hybrid Optimization\r\n\r\nIntegra valores cl\u00e1sicos y cu\u00e1nticos:\r\n\r\n```python\r\nresult = sdk.hybrid_run(circuit, classical_inputs={\"alpha\": 0.5, \"beta\": 0.9})\r\n```\r\n\r\n### 3. Distributed Compilation\r\n\r\nDespliega compilaciones pesadas a workers remotos:\r\n\r\n```python\r\nsdk.worker_submit(circuit, backend=\"gcr.io/dsf-quantum-475822/quantum-worker\")\r\n```\r\n\r\n## \ud83d\udcca Rate Limits\r\n\r\n|      Tier    | Simulations/Day | Batch Size | Worker Jobs | Compilation |\r\n|--------------|-----------------|------------|-------------|-------------|\r\n| Community    |       500       |      \u274c    |     \u274c     |     \u274c      |\r\n| Professional |     ilimitado   |  \u2705 \u22641000  |  limitado   |     \u2705      |\r\n| Enterprise   |     ilimitado   |  \u2705 \u22641000  |     \u2705     | \u2705 (QPU)     |\r\n\r\n## \ud83c\udd9a Tier Comparison\r\n\r\n|       Feature       | Community | Professional | Enterprise |\r\n|---------------------|-----------|--------------|------------|\r\n| Local simulation    |    \u2705     |      \u2705     |     \u2705     |\r\n| Batch simulation    |    \u274c     |      \u2705     |     \u2705     |\r\n| Quantum compilation |    \u274c     |      \u2705     | \u2705 (QPU+)  |\r\n| Hybrid evaluation   |    \u274c     |      \u2705     |     \u2705     |\r\n| Distributed workers |    \u274c     |      \u274c     |     \u2705     |\r\n| Cloud orchestration |    \u274c     |      \u274c     |     \u2705     |\r\n\r\n## \ud83d\udcd6 API Reference\r\n\r\n### Initialization\r\n\r\n```python\r\nQuantumSDK(\r\n    tier='community'|'professional'|'enterprise',\r\n    license_key=None,\r\n    base_url=None,\r\n    timeout=30\r\n)\r\n```\r\n\r\n### Core Methods\r\n\r\n- `create_circuit()` \u2192 Crea una nueva topolog\u00eda.\r\n- `simulate(circuit)` \u2192 Simula localmente.\r\n- `batch_simulate(circuits)` \u2192 Simula m\u00faltiples circuitos.\r\n- `compile(circuit, target=\"qasm\"|\"binary\"|\"tensor\")` \u2192 Compila el circuito.\r\n- `hybrid_run(circuit, classical_inputs)` \u2192 Eval\u00faa circuito con datos cl\u00e1sicos.\r\n- `worker_submit(circuit, backend, batch_size)` \u2192 Env\u00edo distribuido.\r\n- `worker_status(task_id)` \u2192 Monitorea progreso.\r\n\r\n## \u26a0\ufe0f Common Errors\r\n\r\n|         C\u00f3digo         |           Causa            |            Soluci\u00f3n          |\r\n|------------------------|----------------------------|------------------------------|\r\n| 422 Invalid Circuit    | Falta topolog\u00eda o medida   | A\u00f1ade al menos una medida    |\r\n| 429 Rate Limit         | Excediste el l\u00edmite diario | Espera o sube de tier        |\r\n| 500 Worker Unavailable | El worker no responde      | Reintenta o usa otro backend |\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Lightweight SDK for DSF Quantum Adaptive Scoring with IBM Quantum support",
    "version": "1.0.6",
    "project_urls": {
        "Bug Tracker": "https://github.com/jaimeajl/dsf-quantum-sdk/issues",
        "Documentation": "https://docs.jaimeajl.com/dsf-quantum-sdk",
        "Examples": "https://github.com/jaimeajl/dsf-quantum-sdk/tree/main/examples",
        "Homepage": "https://github.com/jaimeajl/dsf-quantum-sdk",
        "Source Code": "https://github.com/jaimeajl/dsf-quantum-sdk"
    },
    "split_keywords": [
        "quantum",
        " quantum computing",
        " ibm quantum",
        " qiskit",
        " adaptive scoring",
        " hierarchical evaluation",
        " quantum amplitude estimation",
        " qae",
        " dsf",
        " decision support",
        " machine learning"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e8601dab71c105eada39e6d07e0c841054ec6be01d67396c5dc750c60c304bf2",
                "md5": "6d34d05e731f99b3091259206dfd0d61",
                "sha256": "1db54823e8665b192c32a5fc4d1e87ee0b13c4136586fcac0f18a48d05bd58bd"
            },
            "downloads": -1,
            "filename": "dsf_quantum_sdk-1.0.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6d34d05e731f99b3091259206dfd0d61",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 15158,
            "upload_time": "2025-10-23T15:01:55",
            "upload_time_iso_8601": "2025-10-23T15:01:55.536423Z",
            "url": "https://files.pythonhosted.org/packages/e8/60/1dab71c105eada39e6d07e0c841054ec6be01d67396c5dc750c60c304bf2/dsf_quantum_sdk-1.0.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7d6c98108031f1202f375409c90927e127eca91e5fe690ddb5d95a28d7c887f6",
                "md5": "1e7a9b8ca122a3ea06f304f8b618ad2c",
                "sha256": "9ae3d0b30983d088fd1c2ca9769a5635116f611ef02c57888541c98d659afca0"
            },
            "downloads": -1,
            "filename": "dsf_quantum_sdk-1.0.6.tar.gz",
            "has_sig": false,
            "md5_digest": "1e7a9b8ca122a3ea06f304f8b618ad2c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 17481,
            "upload_time": "2025-10-23T15:01:56",
            "upload_time_iso_8601": "2025-10-23T15:01:56.470130Z",
            "url": "https://files.pythonhosted.org/packages/7d/6c/98108031f1202f375409c90927e127eca91e5fe690ddb5d95a28d7c887f6/dsf_quantum_sdk-1.0.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-23 15:01:56",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "jaimeajl",
    "github_project": "dsf-quantum-sdk",
    "github_not_found": true,
    "lcname": "dsf-quantum-sdk"
}
        
Elapsed time: 4.25501s