dspin


Namedspin JSON
Version 1.1.2 PyPI version JSON
download
home_pagehttps://github.com/JialongJiang/DSPIN
SummaryRegulatory network models from single-cell perturbation profiling
upload_time2024-10-22 04:40:02
maintainerNone
docs_urlNone
authorJialong Jiang
requires_python>=3.6
licenseApache-2.0 license
keywords network inference single cell transcriptomics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # D-SPIN: Constructing regulatory network models from scRNA-seq perturbation profiling  

D-SPIN is a computational framework for constructing regulatory network models of genes or gene programs from single-cell RNA-seq profiling of perturbation conditions. D-SPIN integrates information from multiple perturbation conditions for network inference with improved efficienty and accuracy. The regulatory network can be defined on single genes or gene programs (groups of coexpressed genes). The package includes implementation of gene program discovery, network inference, and network analysis. 

If D-SPIN is useful for your research, consider citing "D-SPIN constructs gene regulatory network models from multiplexed scRNA-seq data revealing organizing principles of cellular perturbation response" ([bioRxiv](https://www.biorxiv.org/content/10.1101/2023.04.19.537364)).

## Contact 

For any questions and feedback regarding D-SPIN, please contact us at [jiangjl@caltech.edu](mailto:jiangjl@caltech.edu) or open an issue on GitHub.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/JialongJiang/DSPIN",
    "name": "dspin",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "network inference, single cell, transcriptomics",
    "author": "Jialong Jiang",
    "author_email": "jiangjl@caltech.edu",
    "download_url": "https://files.pythonhosted.org/packages/21/8a/a7913bf3e5007461e5d70b75e59851024eb13553b7109a3973594e9bf9c8/dspin-1.1.2.tar.gz",
    "platform": null,
    "description": "# D-SPIN: Constructing regulatory network models from scRNA-seq perturbation profiling  \n\nD-SPIN is a computational framework for constructing regulatory network models of genes or gene programs from single-cell RNA-seq profiling of perturbation conditions. D-SPIN integrates information from multiple perturbation conditions for network inference with improved efficienty and accuracy. The regulatory network can be defined on single genes or gene programs (groups of coexpressed genes). The package includes implementation of gene program discovery, network inference, and network analysis. \n\nIf D-SPIN is useful for your research, consider citing \"D-SPIN constructs gene regulatory network models from multiplexed scRNA-seq data revealing organizing principles of cellular perturbation response\" ([bioRxiv](https://www.biorxiv.org/content/10.1101/2023.04.19.537364)).\n\n## Contact \n\nFor any questions and feedback regarding D-SPIN, please contact us at [jiangjl@caltech.edu](mailto:jiangjl@caltech.edu) or open an issue on GitHub.\n",
    "bugtrack_url": null,
    "license": "Apache-2.0 license",
    "summary": "Regulatory network models from single-cell perturbation profiling",
    "version": "1.1.2",
    "project_urls": {
        "Homepage": "https://github.com/JialongJiang/DSPIN"
    },
    "split_keywords": [
        "network inference",
        " single cell",
        " transcriptomics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e6c86a65595ee8646c5591c4743a651e4a6ff41a1a84a556ad51cee4f1ae8322",
                "md5": "abe3d4c7c05e119556e0eec199bd3371",
                "sha256": "c715008cc527c2dcdc5a323ce783f3a100834405e88a948fe8bf8cbb377fb7d7"
            },
            "downloads": -1,
            "filename": "dspin-1.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "abe3d4c7c05e119556e0eec199bd3371",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 36084,
            "upload_time": "2024-10-22T04:39:27",
            "upload_time_iso_8601": "2024-10-22T04:39:27.180360Z",
            "url": "https://files.pythonhosted.org/packages/e6/c8/6a65595ee8646c5591c4743a651e4a6ff41a1a84a556ad51cee4f1ae8322/dspin-1.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "218aa7913bf3e5007461e5d70b75e59851024eb13553b7109a3973594e9bf9c8",
                "md5": "a6dc4e9e69055be907cb9a89f8214120",
                "sha256": "557efac90f6eda949930c23f1cb7d33748a7462627a2d2deef09750108eba02f"
            },
            "downloads": -1,
            "filename": "dspin-1.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "a6dc4e9e69055be907cb9a89f8214120",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 69065,
            "upload_time": "2024-10-22T04:40:02",
            "upload_time_iso_8601": "2024-10-22T04:40:02.436238Z",
            "url": "https://files.pythonhosted.org/packages/21/8a/a7913bf3e5007461e5d70b75e59851024eb13553b7109a3973594e9bf9c8/dspin-1.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-22 04:40:02",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "JialongJiang",
    "github_project": "DSPIN",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "dspin"
}
        
Elapsed time: 0.80052s