dtacs


Namedtacs JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/spaceml-org/DTACSNet
Summary🛰️ Cloud Detection and Atmospheric Correction With Efficient Deep Learning Models
upload_time2024-12-04 06:06:00
maintainerNone
docs_urlNone
authorGonzalo Mateo-GarcĂ­a
requires_python<4.0,>=3.10
license GPL-3.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Article DOI:10.1109/JSTARS.2024.3480520](https://img.shields.io/badge/Article%20DOI-10.1109%2FJSTARS.2024.3480520-blue)](https://doi.org/10.1109/JSTARS.2024.3480520) [![GitHub release (latest SemVer including pre-releases)](https://img.shields.io/github/v/release/spaceml-org/DTACSNet?sort=semver)](https://github.com/spaceml-org/DTACSNet/releases) [![PyPI](https://img.shields.io/pypi/v/dtacs)](https://pypi.org/project/dtacs/) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/dtacs)](https://pypi.org/project/dtacs/) [![PyPI - License](https://img.shields.io/pypi/l/dtacs)](https://github.com/spaceml-org/DTACSNet/blob/main/LICENSE) [![docs](https://badgen.net/badge/docs/spaceml-org.github.io%2FDTACSNet/blue)](https://spaceml-org.github.io/DTACSNet/)

# [DTACSNet: Onboard Cloud Detection and Atmospheric Correction With Efficient Deep Learning Models](https://ieeexplore.ieee.org/document/10716772)

*Cesar Aybar*<sup>§</sup>, *Gonzalo Mateo-García*<sup>§</sup>, *Giacomo Acciarini*<sup>§</sup>, *Vit Ruzicka*, *Gabriele Meoni*, *Nicolas Longepe*, *Luis Gómez-Chova* <sub><sup>*§ development contribution*</sup></sub>

[10.1109/JSTARS.2024.3480520](https://ieeexplore.ieee.org/document/10716772)

This repo contains an open implementation to run inference with DTACSNet models for atmospheric correction. **This repo and trained models are released under a** [Creative Commons non-commercial licence](https://creativecommons.org/licenses/by-nc/4.0/legalcode.txt) 
<img src="https://mirrors.creativecommons.org/presskit/buttons/88x31/png/by-nc.png" alt="licence" width="60"/>

Install ⚙️:
```bash
pip install dtacs
```

Run:

```python
from dtacs.model_wrapper import ACModel
model_atmospheric_correction = ACModel(model_name="CNN_corrector_phisat2")
model_atmospheric_correction.load_weights()

ac_output = model_atmospheric_correction.predict(l1c_toa_s2)
```

<img src="assets/example_ac.png" alt="awesome atmospheric correction" width="100%">
The figure above shows a sample of Sentinel-2 level 1C, DTACSNet model output and Sentinel-2 level 2A in the RGB (first row) and in the SWIR, NIR, Red (last row) composites.

See the [inference tutorial](https://spaceml-org.github.io/DTACSNet/tutorials/inference_Sentinel-2.html) for a complete example.


## Citation

If you find this work useful for your research, please consider citing [our work](https://ieeexplore.ieee.org/document/10716772):

```bibtex
@article{aybar_onboard_2024,
	title = {Onboard {Cloud} {Detection} and {Atmospheric} {Correction} {With} {Efficient} {Deep} {Learning} {Models}},
	volume = {17},
	issn = {2151-1535},
	url = {https://ieeexplore.ieee.org/abstract/document/10716772},
	doi = {10.1109/JSTARS.2024.3480520},
	urldate = {2024-11-12},
	journal = {IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing},
	author = {Aybar, Cesar and Mateo-García, Gonzalo and Acciarini, Giacomo and Růžička, Vít and Meoni, Gabriele and Longépé, Nicolas and Gómez-Chova, Luis},
	year = {2024},
	note = {Conference Name: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing},
	pages = {19518--19529}
}
```

## Acknowledgments

DTACSNet has been developed by Trillium Technologies. It has been funded by ESA Cognitive Cloud Computing in Space initiative project number D-TACS I-2022-00380.

## More Cloud Detection Viz

![#8db5f0](https://placehold.co/15x15/8db5f0/8db5f0.png) Thick cloud
![#8df094](https://placehold.co/15x15/8df094/8df094.png) Thin cloud 
![#fff982](https://placehold.co/15x15/fff982/fff982.png) Cloud shadow

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/OfuPpQGUqOFyqB26YrlDF.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/5d0nbfVGvUQHuzNUKVqq5.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/b0I0ZAgFwsbUoJOLw5z6E.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/dZlcpUVXi6XJ7Xb0Ig9fm.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/phuSxN81fwl9oP-nck4av.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/ESof9Ota75fTgsT0sYNnl.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/TmKdQ6zwtZnD2xFBi-Jvf.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/-IE4TW5cjrKCOmbI0nq9w.png)

## More Atmospheric Correction Viz

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/t_8CiBDUqBdafIV9w4ylK.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/JMyEEYn3aMJZrz3BDfvXs.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/-8oo6ke6GgRvaadsVrviq.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/fSue-_WxTla3IRH5VplGJ.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/STyfQtbNkdLEx-HBI3V-V.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/RvXFiBDUjd4wQcjz8pSEH.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/IiGIz-W8KMsxuMPeM3Ogh.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/PNco-ihWwqSSLICgOtKsB.png)


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/spaceml-org/DTACSNet",
    "name": "dtacs",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": "Gonzalo Mateo-Garc\u00eda",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/a7/45/ad85a284469479a1ee02ff7a11918ab5853cf3b38afc60c983c857eb3c0b/dtacs-1.0.1.tar.gz",
    "platform": null,
    "description": "[![Article DOI:10.1109/JSTARS.2024.3480520](https://img.shields.io/badge/Article%20DOI-10.1109%2FJSTARS.2024.3480520-blue)](https://doi.org/10.1109/JSTARS.2024.3480520) [![GitHub release (latest SemVer including pre-releases)](https://img.shields.io/github/v/release/spaceml-org/DTACSNet?sort=semver)](https://github.com/spaceml-org/DTACSNet/releases) [![PyPI](https://img.shields.io/pypi/v/dtacs)](https://pypi.org/project/dtacs/) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/dtacs)](https://pypi.org/project/dtacs/) [![PyPI - License](https://img.shields.io/pypi/l/dtacs)](https://github.com/spaceml-org/DTACSNet/blob/main/LICENSE) [![docs](https://badgen.net/badge/docs/spaceml-org.github.io%2FDTACSNet/blue)](https://spaceml-org.github.io/DTACSNet/)\n\n# [DTACSNet: Onboard Cloud Detection and Atmospheric Correction With Efficient Deep Learning Models](https://ieeexplore.ieee.org/document/10716772)\n\n*Cesar Aybar*<sup>\u00a7</sup>, *Gonzalo Mateo-Garc\u00eda*<sup>\u00a7</sup>, *Giacomo Acciarini*<sup>\u00a7</sup>, *Vit Ruzicka*, *Gabriele Meoni*, *Nicolas Longepe*, *Luis G\u00f3mez-Chova* <sub><sup>*\u00a7 development contribution*</sup></sub>\n\n[10.1109/JSTARS.2024.3480520](https://ieeexplore.ieee.org/document/10716772)\n\nThis repo contains an open implementation to run inference with DTACSNet models for atmospheric correction. **This repo and trained models are released under a** [Creative Commons non-commercial licence](https://creativecommons.org/licenses/by-nc/4.0/legalcode.txt) \n<img src=\"https://mirrors.creativecommons.org/presskit/buttons/88x31/png/by-nc.png\" alt=\"licence\" width=\"60\"/>\n\nInstall \u2699\ufe0f:\n```bash\npip install dtacs\n```\n\nRun:\n\n```python\nfrom dtacs.model_wrapper import ACModel\nmodel_atmospheric_correction = ACModel(model_name=\"CNN_corrector_phisat2\")\nmodel_atmospheric_correction.load_weights()\n\nac_output = model_atmospheric_correction.predict(l1c_toa_s2)\n```\n\n<img src=\"assets/example_ac.png\" alt=\"awesome atmospheric correction\" width=\"100%\">\nThe figure above shows a sample of Sentinel-2 level 1C, DTACSNet model output and Sentinel-2 level 2A in the RGB (first row) and in the SWIR, NIR, Red (last row) composites.\n\nSee the [inference tutorial](https://spaceml-org.github.io/DTACSNet/tutorials/inference_Sentinel-2.html) for a complete example.\n\n\n## Citation\n\nIf you find this work useful for your research, please consider citing [our work](https://ieeexplore.ieee.org/document/10716772):\n\n```bibtex\n@article{aybar_onboard_2024,\n\ttitle = {Onboard {Cloud} {Detection} and {Atmospheric} {Correction} {With} {Efficient} {Deep} {Learning} {Models}},\n\tvolume = {17},\n\tissn = {2151-1535},\n\turl = {https://ieeexplore.ieee.org/abstract/document/10716772},\n\tdoi = {10.1109/JSTARS.2024.3480520},\n\turldate = {2024-11-12},\n\tjournal = {IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing},\n\tauthor = {Aybar, Cesar and Mateo-Garc\u00eda, Gonzalo and Acciarini, Giacomo and R\u016f\u017ei\u010dka, V\u00edt and Meoni, Gabriele and Long\u00e9p\u00e9, Nicolas and G\u00f3mez-Chova, Luis},\n\tyear = {2024},\n\tnote = {Conference Name: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing},\n\tpages = {19518--19529}\n}\n```\n\n## Acknowledgments\n\nDTACSNet has been developed by Trillium Technologies. It has been funded by ESA Cognitive Cloud Computing in Space initiative project number D-TACS I-2022-00380.\n\n## More Cloud Detection Viz\n\n![#8db5f0](https://placehold.co/15x15/8db5f0/8db5f0.png) Thick cloud\n![#8df094](https://placehold.co/15x15/8df094/8df094.png) Thin cloud \n![#fff982](https://placehold.co/15x15/fff982/fff982.png) Cloud shadow\n\n![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/OfuPpQGUqOFyqB26YrlDF.png)\n\n![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/5d0nbfVGvUQHuzNUKVqq5.png)\n\n![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/b0I0ZAgFwsbUoJOLw5z6E.png)\n\n![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/dZlcpUVXi6XJ7Xb0Ig9fm.png)\n\n![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/phuSxN81fwl9oP-nck4av.png)\n\n![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/ESof9Ota75fTgsT0sYNnl.png)\n\n![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/TmKdQ6zwtZnD2xFBi-Jvf.png)\n\n![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/-IE4TW5cjrKCOmbI0nq9w.png)\n\n## More Atmospheric Correction Viz\n\n![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/t_8CiBDUqBdafIV9w4ylK.png)\n\n![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/JMyEEYn3aMJZrz3BDfvXs.png)\n\n![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/-8oo6ke6GgRvaadsVrviq.png)\n\n![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/fSue-_WxTla3IRH5VplGJ.png)\n\n![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/STyfQtbNkdLEx-HBI3V-V.png)\n\n![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/RvXFiBDUjd4wQcjz8pSEH.png)\n\n![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/IiGIz-W8KMsxuMPeM3Ogh.png)\n\n![image/png](https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/PNco-ihWwqSSLICgOtKsB.png)\n\n",
    "bugtrack_url": null,
    "license": "\tGPL-3.0",
    "summary": "\ud83d\udef0\ufe0f Cloud Detection and Atmospheric Correction With Efficient Deep Learning Models",
    "version": "1.0.1",
    "project_urls": {
        "Documentation": "https://spaceml-org.github.io/DTACSNet/",
        "Homepage": "https://github.com/spaceml-org/DTACSNet",
        "Repository": "https://github.com/spaceml-org/DTACSNet"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "74a8b903a51fd9191b30a91aa3faadce30bf817e51bd769576e62a32f705a968",
                "md5": "fdcf252109f2fe4c8448a53f5f45e002",
                "sha256": "6c64d8dad2f9de167f85e9ac0eee9d6cc6cb28174786af67d163ed20cc0676d9"
            },
            "downloads": -1,
            "filename": "dtacs-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fdcf252109f2fe4c8448a53f5f45e002",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 21405,
            "upload_time": "2024-12-04T06:05:58",
            "upload_time_iso_8601": "2024-12-04T06:05:58.245229Z",
            "url": "https://files.pythonhosted.org/packages/74/a8/b903a51fd9191b30a91aa3faadce30bf817e51bd769576e62a32f705a968/dtacs-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a745ad85a284469479a1ee02ff7a11918ab5853cf3b38afc60c983c857eb3c0b",
                "md5": "f6d4cbad246058ee8dbc628af3d77e5f",
                "sha256": "ace7c31f8829c2a21e8c58bb96598c9b780cd52bbc61b5126915b173bafd9742"
            },
            "downloads": -1,
            "filename": "dtacs-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "f6d4cbad246058ee8dbc628af3d77e5f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 22892,
            "upload_time": "2024-12-04T06:06:00",
            "upload_time_iso_8601": "2024-12-04T06:06:00.196942Z",
            "url": "https://files.pythonhosted.org/packages/a7/45/ad85a284469479a1ee02ff7a11918ab5853cf3b38afc60c983c857eb3c0b/dtacs-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-04 06:06:00",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "spaceml-org",
    "github_project": "DTACSNet",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "tox": true,
    "lcname": "dtacs"
}
        
Elapsed time: 1.04958s