A python library for decision tree visualization and model interpretation. Decision trees are the fundamental building block of [gradient boosting machines](http://explained.ai/gradient-boosting/index.html) and [Random Forests](https://en.wikipedia.org/wiki/Random_forest)(tm), probably the two most popular machine learning models for structured data. Visualizing decision trees is a tremendous aid when learning how these models work and when interpreting models. The visualizations are inspired by an educational animation by [R2D3](http://www.r2d3.us/); [A visual introduction to machine learning](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/). Please see [How to visualize decision trees](http://explained.ai/decision-tree-viz/index.html) for deeper discussion of our decision tree visualization library and the visual design decisions we made.
Currently dtreeviz supports: [scikit-learn](https://scikit-learn.org/stable), [XGBoost](https://xgboost.readthedocs.io/en/latest), [Spark MLlib](https://spark.apache.org/mllib/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [Tensorflow](https://www.tensorflow.org/decision_forests). See [Installation instructions](README.md#Installation).
Raw data
{
"_id": null,
"home_page": "https://github.com/parrt/dtreeviz",
"name": "dtreeviz",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "",
"keywords": "machine-learning data structures trees visualization",
"author": "Terence Parr, Tudor Lapusan, and Prince Grover",
"author_email": "parrt@antlr.org",
"download_url": "https://files.pythonhosted.org/packages/09/70/40d3b2ee1a4d68c0cb5c97b23291ce856b9092a097559a3f68504dbed777/dtreeviz-2.2.2.tar.gz",
"platform": null,
"description": "A python library for decision tree visualization and model interpretation. Decision trees are the fundamental building block of [gradient boosting machines](http://explained.ai/gradient-boosting/index.html) and [Random Forests](https://en.wikipedia.org/wiki/Random_forest)(tm), probably the two most popular machine learning models for structured data. Visualizing decision trees is a tremendous aid when learning how these models work and when interpreting models. The visualizations are inspired by an educational animation by [R2D3](http://www.r2d3.us/); [A visual introduction to machine learning](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/). Please see [How to visualize decision trees](http://explained.ai/decision-tree-viz/index.html) for deeper discussion of our decision tree visualization library and the visual design decisions we made.\n\nCurrently dtreeviz supports: [scikit-learn](https://scikit-learn.org/stable), [XGBoost](https://xgboost.readthedocs.io/en/latest), [Spark MLlib](https://spark.apache.org/mllib/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [Tensorflow](https://www.tensorflow.org/decision_forests). See [Installation instructions](README.md#Installation).\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A Python 3 library for sci-kit learn, XGBoost, LightGBM, Spark, and TensorFlow decision tree visualization",
"version": "2.2.2",
"project_urls": {
"Homepage": "https://github.com/parrt/dtreeviz"
},
"split_keywords": [
"machine-learning",
"data",
"structures",
"trees",
"visualization"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b3e844eb59345d8ba9d2f6610df6441d63082f46021c1685de24716c22f55383",
"md5": "c6cdd4bc50640bd88f43b91b82afa919",
"sha256": "e510d80857b29f15a12e8ebe2c7ab3fb667096739742ab47e5d8889cf78da8fe"
},
"downloads": -1,
"filename": "dtreeviz-2.2.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c6cdd4bc50640bd88f43b91b82afa919",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 91776,
"upload_time": "2023-07-13T17:21:21",
"upload_time_iso_8601": "2023-07-13T17:21:21.303677Z",
"url": "https://files.pythonhosted.org/packages/b3/e8/44eb59345d8ba9d2f6610df6441d63082f46021c1685de24716c22f55383/dtreeviz-2.2.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "097040d3b2ee1a4d68c0cb5c97b23291ce856b9092a097559a3f68504dbed777",
"md5": "97b524caaefb1b2d7fe29291c8fd45c2",
"sha256": "a145ff91ffaa11bd2f59186fdcffaa384d90c1757517cbb27e66cc83922319ba"
},
"downloads": -1,
"filename": "dtreeviz-2.2.2.tar.gz",
"has_sig": false,
"md5_digest": "97b524caaefb1b2d7fe29291c8fd45c2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 77028,
"upload_time": "2023-07-13T17:21:22",
"upload_time_iso_8601": "2023-07-13T17:21:22.630744Z",
"url": "https://files.pythonhosted.org/packages/09/70/40d3b2ee1a4d68c0cb5c97b23291ce856b9092a097559a3f68504dbed777/dtreeviz-2.2.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-07-13 17:21:22",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "parrt",
"github_project": "dtreeviz",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "dtreeviz"
}