dtreg


Namedtreg JSON
Version 1.1.1 PyPI version JSON
download
home_pageNone
SummaryInteract with Data Type Registries and Create Machine Actionable Data
upload_time2025-02-15 11:35:39
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMIT
keywords data type registry schema json-ld
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # dtreg
<!-- badges: start -->
[![PyPI version](https://badge.fury.io/py/dtreg.svg?cache-control=no-cache)](https://badge.fury.io/py/dtreg)
[![Coverage Status](https://coveralls.io/repos/github/OlgaLezhnina/dtreg_py/badge.svg?branch=master)](https://coveralls.io/github/OlgaLezhnina/dtreg_py?branch=master)

![Python](https://img.shields.io/badge/python-3.8-blue.svg)
<!-- badges: end -->

The goal of dtreg is to help users interact with various data type registries (DTRs) and create machine-readable data. 
Currently, we support the [ePIC](https://fc4e-t4-3.github.io/) and [ORKG](https://orkg.org/) DTRs.
* First, load a DTR schema (an ePIC datatype or an ORKG template) as a Python object.
* Then, create a new instance of the schema by filling in the relevant fields.
* Finally, write the instance as a machine-readable JSON-LD file. 
## Installation

```sh
## install from PyPi:
pip install dtreg
```

## Example

This example shows you how to work with a DTR schema.
You need to know the schema identifier; see the [help page](https://reborn.orkg.org/pages/help).

```python
## import functions from the dtreg
from dtreg.load_datatype import load_datatype
from dtreg.to_jsonld import to_jsonld
## import pandas for a dataframe
import pandas as pd
## load the schema with the known identifier
dt = load_datatype("https://doi.org/21.T11969/aff130c76e68ead3862e")
## look at the schemata you might need to use
dt.__dict__.keys() 
## check available fields for your schema
dt.data_item.prop_list 
## create your instance by filling the fields of your choice
## see the help page to know more about the fields
my_label = "my results"
my_df = pd.DataFrame({'A': [1], 'B': [2]})
my_df.name = "dataframe_name"
url_1 = dt.url(label = "URL_1")
url_2 = dt.url(label = "URL_2")
my_inst = dt.data_item(label=my_label,
                       has_expression=[url_1, url_2],
                       source_table=my_df)
## write the instance in JSON-LD format as a string
my_json = to_jsonld(my_inst) 

## the result can be saved as a JSON file
with open('my_file.json', 'w') as f:
    f.write(my_json)

```
For more information, please see the [help page](https://reborn.orkg.org/pages/help).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "dtreg",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "Olga Lezhnina <olga.lezhnina@tib.eu>",
    "keywords": "data type registry, schema, JSON-LD",
    "author": null,
    "author_email": "Olga Lezhnina <olga.lezhnina@tib.eu>, Manuel Prinz <manuel.prinz@tib.eu>, Markus Stocker <markus.stocker@tib.eu>",
    "download_url": "https://files.pythonhosted.org/packages/5f/84/140c1646987813dc0e4f8aa61fceae40ab816514b1835ac71b5b74c062fe/dtreg-1.1.1.tar.gz",
    "platform": null,
    "description": "# dtreg\n<!-- badges: start -->\n[![PyPI version](https://badge.fury.io/py/dtreg.svg?cache-control=no-cache)](https://badge.fury.io/py/dtreg)\n[![Coverage Status](https://coveralls.io/repos/github/OlgaLezhnina/dtreg_py/badge.svg?branch=master)](https://coveralls.io/github/OlgaLezhnina/dtreg_py?branch=master)\n\n![Python](https://img.shields.io/badge/python-3.8-blue.svg)\n<!-- badges: end -->\n\nThe goal of dtreg is to help users interact with various data type registries (DTRs) and create machine-readable data. \nCurrently, we support the [ePIC](https://fc4e-t4-3.github.io/) and [ORKG](https://orkg.org/) DTRs.\n* First, load a DTR schema (an ePIC datatype or an ORKG template) as a Python object.\n* Then, create a new instance of the schema by filling in the relevant fields.\n* Finally, write the instance as a machine-readable JSON-LD file. \n## Installation\n\n```sh\n## install from PyPi:\npip install dtreg\n```\n\n## Example\n\nThis example shows you how to work with a DTR schema.\nYou need to know the schema identifier; see the [help page](https://reborn.orkg.org/pages/help).\n\n```python\n## import functions from the dtreg\nfrom dtreg.load_datatype import load_datatype\nfrom dtreg.to_jsonld import to_jsonld\n## import pandas for a dataframe\nimport pandas as pd\n## load the schema with the known identifier\ndt = load_datatype(\"https://doi.org/21.T11969/aff130c76e68ead3862e\")\n## look at the schemata you might need to use\ndt.__dict__.keys() \n## check available fields for your schema\ndt.data_item.prop_list \n## create your instance by filling the fields of your choice\n## see the help page to know more about the fields\nmy_label = \"my results\"\nmy_df = pd.DataFrame({'A': [1], 'B': [2]})\nmy_df.name = \"dataframe_name\"\nurl_1 = dt.url(label = \"URL_1\")\nurl_2 = dt.url(label = \"URL_2\")\nmy_inst = dt.data_item(label=my_label,\n                       has_expression=[url_1, url_2],\n                       source_table=my_df)\n## write the instance in JSON-LD format as a string\nmy_json = to_jsonld(my_inst) \n\n## the result can be saved as a JSON file\nwith open('my_file.json', 'w') as f:\n    f.write(my_json)\n\n```\nFor more information, please see the [help page](https://reborn.orkg.org/pages/help).\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Interact with Data Type Registries and Create Machine Actionable Data",
    "version": "1.1.1",
    "project_urls": {
        "Changelog": "https://gitlab.com/TIBHannover/orkg/dtreg-python/-/blob/master/CHANGELOG.md",
        "Repository": "https://gitlab.com/TIBHannover/orkg/dtreg-python"
    },
    "split_keywords": [
        "data type registry",
        " schema",
        " json-ld"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ee4971b6d9fe0cc56d52172ac0727f3cae68afcb10823af2933727428995a70b",
                "md5": "a4683e5cc25a219f9ae90278dc818fea",
                "sha256": "c41fe14febd805e217eb6bb98d7e6c407948da04a0044351b11fff9be9a9ccf2"
            },
            "downloads": -1,
            "filename": "dtreg-1.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a4683e5cc25a219f9ae90278dc818fea",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 32673,
            "upload_time": "2025-02-15T11:35:37",
            "upload_time_iso_8601": "2025-02-15T11:35:37.392557Z",
            "url": "https://files.pythonhosted.org/packages/ee/49/71b6d9fe0cc56d52172ac0727f3cae68afcb10823af2933727428995a70b/dtreg-1.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "5f84140c1646987813dc0e4f8aa61fceae40ab816514b1835ac71b5b74c062fe",
                "md5": "0360d9a0709d942a4a8e656dc917f4d8",
                "sha256": "ba7e90f139cd66a637c1a0ff3463f238f0b1879254188ec7fc383ef4810a75cb"
            },
            "downloads": -1,
            "filename": "dtreg-1.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "0360d9a0709d942a4a8e656dc917f4d8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 19307,
            "upload_time": "2025-02-15T11:35:39",
            "upload_time_iso_8601": "2025-02-15T11:35:39.656850Z",
            "url": "https://files.pythonhosted.org/packages/5f/84/140c1646987813dc0e4f8aa61fceae40ab816514b1835ac71b5b74c062fe/dtreg-1.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-15 11:35:39",
    "github": false,
    "gitlab": true,
    "bitbucket": false,
    "codeberg": false,
    "gitlab_user": "TIBHannover",
    "gitlab_project": "orkg",
    "lcname": "dtreg"
}
        
Elapsed time: 1.77295s