dualopt


Namedualopt JSON
Version 0.1.8 PyPI version JSON
download
home_pagehttps://github.com/pranavphoenix/DualOpt
SummaryDual Optimizer Training
upload_time2023-05-18 16:53:09
maintainer
docs_urlNone
authorPranav Jeevan
requires_python
licenseMIT
keywords artificial intelligence machine learning optimizer training image classificationsemantic segmentation image super-resolution
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # DualOpt
Dual Optimizer Training 

A variant of the [SWATS training paradigm](https://arxiv.org/abs/1712.07628) which uses two optimizers for training. 

## Install

```bash
$ pip install dualopt
```

## Usage
### Image Classification

```python
import dualopt, torch
from dualopt import classification

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

num_classes = 10

#define model
#define datasets and dataloaders

top1 = []   #top1 accuracy
top5 = []   #top5 accuracy
traintime = []
testtime = []
counter = 20  # number of epochs without any improvement in accuracy before we stop training for each optimizer

PATH = 'saved_model.pth' #path to save model 

classification(model, trainloader, testloader, device, PATH, top1, top5, traintime, testtime,  num_classes = num_classes, set_counter = counter)

print('Finished Training')
print("Results")
print(f"Top 1 Accuracy: {max(top1):.2f} -Top 5 Accuracy : {max(top5):.2f} - Train Time: {min(traintime):.0f} -Test Time: {min(testtime):.0f}\n")
```
# Post-Training

Experiments show that we get good results when training using data augmentations such as Trivial Augment. We found that subsequent post-training without using any data augmentations can further improve the results. 

## Usage


```python
import dualopt, torch, torchvision
import torchvision.transforms as transforms
from dualopt import classification
from dualopt import post_train

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

num_classes = 10

#define model

#set batch size according to GPU 
batch_size = 512

# transforms
transform_train_1 = transforms.Compose(
        [ transforms.RandomHorizontalFlip(p=0.5),
            transforms.TrivialAugmentWide(),
            transforms.ToTensor(),
     transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616))])

transform_train_2 = transforms.Compose(
        [ 
            transforms.ToTensor(),
     transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616))])


transform_test = transforms.Compose(
        [ transforms.ToTensor(),
     transforms.Normalize((0.4941, 0.4853, 0.4507), (0.2468, 0.2430, 0.2618))])

#Dataset
trainset_1 = torchvision.datasets.CIFAR10(root='/workspace/', train=True, download=True, transform=transform_train_1)
trainloader_1 = torch.utils.data.DataLoader(trainset_1, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True, prefetch_factor=2, persistent_workers=2) #trainloader with augmentations

trainset_2 = torchvision.datasets.CIFAR10(root='/workspace/', train=True, download=True, transform=transform_train_2)
trainloader_2 = torch.utils.data.DataLoader(trainset_2, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True, prefetch_factor=2, persistent_workers=2) #trainloader for post-training without augmentations

testset = torchvision.datasets.CIFAR10(root='/workspace/', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True, prefetch_factor=2, persistent_workers=2)


top1 = []   #top1 accuracy
top5 = []   #top5 accuracy
traintime = []
testtime = []
counter = 20  # number of epochs without any improvement in accuracy before we stop training for each optimizer

PATH = 'saved_model.pth' #path to save model 

classification(model, trainloader_1, testloader, device, PATH, top1, top5, traintime, testtime,  num_classes = num_classes, set_counter = counter)
print('Finished Training')

model.load_state_dict(torch.load(PATH))

post_train(model, trainloader_2, testloader, device, PATH, top1, top5, traintime, testtime, num_classes = num_classes, set_counter = counter)
print('Finished Training')

print("Results")
print(f"Top 1 Accuracy: {max(top1):.2f} -Top 5 Accuracy : {max(top5):.2f} - Train Time: {min(traintime):.0f} -Test Time: {min(testtime):.0f}\n")
```

#### Cite the following paper  
```
@misc{jeevan2022convolutional,
      title={Convolutional Xformers for Vision}, 
      author={Pranav Jeevan and Amit sethi},
      year={2022},
      eprint={2201.10271},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pranavphoenix/DualOpt",
    "name": "dualopt",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "artificial intelligence,machine learning,optimizer,training,image classificationsemantic segmentation,image super-resolution",
    "author": "Pranav Jeevan",
    "author_email": "pranav13phoenix@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/ba/dc/d53d71e55ebed8da34ba26f6baffd759db53964bcad73d002a1b1fe1d166/dualopt-0.1.8.tar.gz",
    "platform": null,
    "description": "# DualOpt\r\nDual Optimizer Training \r\n\r\nA variant of the [SWATS training paradigm](https://arxiv.org/abs/1712.07628) which uses two optimizers for training. \r\n\r\n## Install\r\n\r\n```bash\r\n$ pip install dualopt\r\n```\r\n\r\n## Usage\r\n### Image Classification\r\n\r\n```python\r\nimport dualopt, torch\r\nfrom dualopt import classification\r\n\r\ndevice = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\r\n\r\nnum_classes = 10\r\n\r\n#define model\r\n#define datasets and dataloaders\r\n\r\ntop1 = []   #top1 accuracy\r\ntop5 = []   #top5 accuracy\r\ntraintime = []\r\ntesttime = []\r\ncounter = 20  # number of epochs without any improvement in accuracy before we stop training for each optimizer\r\n\r\nPATH = 'saved_model.pth' #path to save model \r\n\r\nclassification(model, trainloader, testloader, device, PATH, top1, top5, traintime, testtime,  num_classes = num_classes, set_counter = counter)\r\n\r\nprint('Finished Training')\r\nprint(\"Results\")\r\nprint(f\"Top 1 Accuracy: {max(top1):.2f} -Top 5 Accuracy : {max(top5):.2f} - Train Time: {min(traintime):.0f} -Test Time: {min(testtime):.0f}\\n\")\r\n```\r\n# Post-Training\r\n\r\nExperiments show that we get good results when training using data augmentations such as Trivial Augment. We found that subsequent post-training without using any data augmentations can further improve the results. \r\n\r\n## Usage\r\n\r\n\r\n```python\r\nimport dualopt, torch, torchvision\r\nimport torchvision.transforms as transforms\r\nfrom dualopt import classification\r\nfrom dualopt import post_train\r\n\r\ndevice = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\r\n\r\nnum_classes = 10\r\n\r\n#define model\r\n\r\n#set batch size according to GPU \r\nbatch_size = 512\r\n\r\n# transforms\r\ntransform_train_1 = transforms.Compose(\r\n        [ transforms.RandomHorizontalFlip(p=0.5),\r\n            transforms.TrivialAugmentWide(),\r\n            transforms.ToTensor(),\r\n     transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616))])\r\n\r\ntransform_train_2 = transforms.Compose(\r\n        [ \r\n            transforms.ToTensor(),\r\n     transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616))])\r\n\r\n\r\ntransform_test = transforms.Compose(\r\n        [ transforms.ToTensor(),\r\n     transforms.Normalize((0.4941, 0.4853, 0.4507), (0.2468, 0.2430, 0.2618))])\r\n\r\n#Dataset\r\ntrainset_1 = torchvision.datasets.CIFAR10(root='/workspace/', train=True, download=True, transform=transform_train_1)\r\ntrainloader_1 = torch.utils.data.DataLoader(trainset_1, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True, prefetch_factor=2, persistent_workers=2) #trainloader with augmentations\r\n\r\ntrainset_2 = torchvision.datasets.CIFAR10(root='/workspace/', train=True, download=True, transform=transform_train_2)\r\ntrainloader_2 = torch.utils.data.DataLoader(trainset_2, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True, prefetch_factor=2, persistent_workers=2) #trainloader for post-training without augmentations\r\n\r\ntestset = torchvision.datasets.CIFAR10(root='/workspace/', train=False, download=True, transform=transform_test)\r\ntestloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True, prefetch_factor=2, persistent_workers=2)\r\n\r\n\r\ntop1 = []   #top1 accuracy\r\ntop5 = []   #top5 accuracy\r\ntraintime = []\r\ntesttime = []\r\ncounter = 20  # number of epochs without any improvement in accuracy before we stop training for each optimizer\r\n\r\nPATH = 'saved_model.pth' #path to save model \r\n\r\nclassification(model, trainloader_1, testloader, device, PATH, top1, top5, traintime, testtime,  num_classes = num_classes, set_counter = counter)\r\nprint('Finished Training')\r\n\r\nmodel.load_state_dict(torch.load(PATH))\r\n\r\npost_train(model, trainloader_2, testloader, device, PATH, top1, top5, traintime, testtime, num_classes = num_classes, set_counter = counter)\r\nprint('Finished Training')\r\n\r\nprint(\"Results\")\r\nprint(f\"Top 1 Accuracy: {max(top1):.2f} -Top 5 Accuracy : {max(top5):.2f} - Train Time: {min(traintime):.0f} -Test Time: {min(testtime):.0f}\\n\")\r\n```\r\n\r\n#### Cite the following paper  \r\n```\r\n@misc{jeevan2022convolutional,\r\n      title={Convolutional Xformers for Vision}, \r\n      author={Pranav Jeevan and Amit sethi},\r\n      year={2022},\r\n      eprint={2201.10271},\r\n      archivePrefix={arXiv},\r\n      primaryClass={cs.CV}\r\n}\r\n\r\n```\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Dual Optimizer Training",
    "version": "0.1.8",
    "project_urls": {
        "Homepage": "https://github.com/pranavphoenix/DualOpt"
    },
    "split_keywords": [
        "artificial intelligence",
        "machine learning",
        "optimizer",
        "training",
        "image classificationsemantic segmentation",
        "image super-resolution"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5b6821bf2fc046389428e410d247c7f714fd96edc98ea7e946d44630b24232e2",
                "md5": "7b65cab976e7827c5481cfca555663c2",
                "sha256": "9b40d14c28a531153b1bcd981a2b0b47268327e4fd4e24b11929d3439bfe0c01"
            },
            "downloads": -1,
            "filename": "dualopt-0.1.8-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7b65cab976e7827c5481cfca555663c2",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 5011,
            "upload_time": "2023-05-18T16:53:07",
            "upload_time_iso_8601": "2023-05-18T16:53:07.866063Z",
            "url": "https://files.pythonhosted.org/packages/5b/68/21bf2fc046389428e410d247c7f714fd96edc98ea7e946d44630b24232e2/dualopt-0.1.8-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "badcd53d71e55ebed8da34ba26f6baffd759db53964bcad73d002a1b1fe1d166",
                "md5": "bfdfb619fdcc9cecc1199f5dd63968d6",
                "sha256": "e0d2b3238b8ec56eeb19c809697aefd6d3cc8f3e5c7f4f7de77056cbc82f7ca4"
            },
            "downloads": -1,
            "filename": "dualopt-0.1.8.tar.gz",
            "has_sig": false,
            "md5_digest": "bfdfb619fdcc9cecc1199f5dd63968d6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4675,
            "upload_time": "2023-05-18T16:53:09",
            "upload_time_iso_8601": "2023-05-18T16:53:09.406847Z",
            "url": "https://files.pythonhosted.org/packages/ba/dc/d53d71e55ebed8da34ba26f6baffd759db53964bcad73d002a1b1fe1d166/dualopt-0.1.8.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-18 16:53:09",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pranavphoenix",
    "github_project": "DualOpt",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "dualopt"
}
        
Elapsed time: 0.16307s