[![Documentation Status](https://readthedocs.org/projects/dvidtools/badge/?version=latest)](http://dvidtools.readthedocs.io/en/latest/?badge=latest)[![Tests](https://github.com/flyconnectome/dvid_tools/actions/workflows/test-package.yml/badge.svg)](https://github.com/flyconnectome/dvid_tools/actions/workflows/test-package.yml)
# dvidtools
Python tools to fetch data from [DVID](https://github.com/janelia-flyem/dvid) servers.
Find the documentation [here](https://dvidtools.readthedocs.io).
Want to query a neuPrint server instead? Check out
[neuprint-python](https://github.com/connectome-neuprint/neuprint-python).
## What can `dvidtools` do for you?
- get/set user bookmarks
- get/set neuron annotations (names)
- download precomputed meshes, skeletons (SWCs) and ROIs
- generate meshes or skeletons from scratch
- get basic neuron info (# of voxels/synapses)
- fetch synapses
- fetch connectivity (adjacency matrix, connectivity table)
- retrieve labels (TODO, to split, etc)
- map positions to body IDs
- detect potential open ends (based on a script by [Stephen Plaza](https://github.com/stephenplaza))
## Install
Make sure you have [Python 3](https://www.python.org) (3.8 or later),
[pip](https://pip.pypa.io/en/stable/installing/). Then run this:
```bash
pip3 install dvidtools
```
To install the dev version straight from Github:
```bash
pip3 install git+https://github.com/flyconnectome/dvid_tools@master
```
## Optional dependencies
Necessary dependencies will be installed automatically.
If you plan to use the tip detector with classifier-derived confidence, you
will also need [sciki-learn](https://scikit-learn.org):
```shell
pip3 install scikit-learn
```
For from-scratch skeletonization you need to install `skeletor`:
```shell
pip3 install skeletor
```
## Examples
Please see the [documentation](https://dvidtools.readthedocs.io) for examples.
## Testing
For testing you need to have two environment variables set: `DVID_TEST_SERVER`
and `DVID_TEST_NODE`. These should point to a DVID server/node that contain
the Janelia hemibrain dataset. Then run:
```bash
$ pytest -v
```
Raw data
{
"_id": null,
"home_page": "https://github.com/flyconnectome/dvid_tools",
"name": "dvidtools",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "DVID API fetch neuron segmentation",
"author": "Philipp Schlegel",
"author_email": "pms70@cam.ac.uk",
"download_url": "https://files.pythonhosted.org/packages/5b/4d/8db0e018cb701206c7b0a7115a43fea7c4a4e19c5ca2db4f7b6b6bf68709/dvidtools-0.5.0.tar.gz",
"platform": null,
"description": "[![Documentation Status](https://readthedocs.org/projects/dvidtools/badge/?version=latest)](http://dvidtools.readthedocs.io/en/latest/?badge=latest)[![Tests](https://github.com/flyconnectome/dvid_tools/actions/workflows/test-package.yml/badge.svg)](https://github.com/flyconnectome/dvid_tools/actions/workflows/test-package.yml)\n\n# dvidtools\nPython tools to fetch data from [DVID](https://github.com/janelia-flyem/dvid) servers.\n\nFind the documentation [here](https://dvidtools.readthedocs.io).\n\nWant to query a neuPrint server instead? Check out\n[neuprint-python](https://github.com/connectome-neuprint/neuprint-python).\n\n## What can `dvidtools` do for you?\n\n- get/set user bookmarks\n- get/set neuron annotations (names)\n- download precomputed meshes, skeletons (SWCs) and ROIs\n- generate meshes or skeletons from scratch\n- get basic neuron info (# of voxels/synapses)\n- fetch synapses\n- fetch connectivity (adjacency matrix, connectivity table)\n- retrieve labels (TODO, to split, etc)\n- map positions to body IDs\n- detect potential open ends (based on a script by [Stephen Plaza](https://github.com/stephenplaza))\n\n## Install\n\nMake sure you have [Python 3](https://www.python.org) (3.8 or later),\n[pip](https://pip.pypa.io/en/stable/installing/). Then run this:\n\n```bash\npip3 install dvidtools\n```\n\nTo install the dev version straight from Github:\n\n```bash\npip3 install git+https://github.com/flyconnectome/dvid_tools@master\n```\n\n## Optional dependencies\nNecessary dependencies will be installed automatically.\n\nIf you plan to use the tip detector with classifier-derived confidence, you\nwill also need [sciki-learn](https://scikit-learn.org):\n\n```shell\npip3 install scikit-learn\n```\n\nFor from-scratch skeletonization you need to install `skeletor`:\n\n```shell\npip3 install skeletor\n```\n\n## Examples\nPlease see the [documentation](https://dvidtools.readthedocs.io) for examples.\n\n## Testing\n\nFor testing you need to have two environment variables set: `DVID_TEST_SERVER`\nand `DVID_TEST_NODE`. These should point to a DVID server/node that contain\nthe Janelia hemibrain dataset. Then run:\n\n```bash\n$ pytest -v\n```\n",
"bugtrack_url": null,
"license": "GNU GPL V3",
"summary": "Fetch data from DVID server",
"version": "0.5.0",
"project_urls": {
"Documentation": "https://dvidtools.readthedocs.io",
"Homepage": "https://github.com/flyconnectome/dvid_tools",
"Source": "https://github.com/flyconnectome/dvid_tools"
},
"split_keywords": [
"dvid",
"api",
"fetch",
"neuron",
"segmentation"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "aafa7b7a68aa6cf77ea7289c825b7704e91af1a3a2bd64218017f35b6ce902ce",
"md5": "4d973321332ae5aaf3b7f90f99aac2bb",
"sha256": "b97219b312570df0dc2ee51d89dab7cc528828abcf863ff3e8f643c895b27d63"
},
"downloads": -1,
"filename": "dvidtools-0.5.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "4d973321332ae5aaf3b7f90f99aac2bb",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 50247,
"upload_time": "2024-05-14T08:36:17",
"upload_time_iso_8601": "2024-05-14T08:36:17.219127Z",
"url": "https://files.pythonhosted.org/packages/aa/fa/7b7a68aa6cf77ea7289c825b7704e91af1a3a2bd64218017f35b6ce902ce/dvidtools-0.5.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5b4d8db0e018cb701206c7b0a7115a43fea7c4a4e19c5ca2db4f7b6b6bf68709",
"md5": "66386d530154cdb1200d5385ae01b085",
"sha256": "abc0fe47ea5b4936d309a954198d4f7875e3070766c686a878cd5ca19400e11c"
},
"downloads": -1,
"filename": "dvidtools-0.5.0.tar.gz",
"has_sig": false,
"md5_digest": "66386d530154cdb1200d5385ae01b085",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 50095,
"upload_time": "2024-05-14T08:36:19",
"upload_time_iso_8601": "2024-05-14T08:36:19.216917Z",
"url": "https://files.pythonhosted.org/packages/5b/4d/8db0e018cb701206c7b0a7115a43fea7c4a4e19c5ca2db4f7b6b6bf68709/dvidtools-0.5.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-05-14 08:36:19",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "flyconnectome",
"github_project": "dvid_tools",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "dvidtools"
}