# DWL CLI Tool
Command-line interface for training DWL (Deep Weight Learning) models.
## Installation
```bash
pip install dwl-cli
```
## Usage
```bash
# Basic DWL training
dwl-train --model bert-base-uncased --dataset yahoo_answers_topics
# Traditional training with custom parameters
dwl-train --model roberta-base --dataset ag_news --method traditional --epochs 50 --lr 0.0001
# DWL training with custom components
dwl-train --model distilbert-base-uncased --dataset emotion --components 100 --epochs 30
# Non-verbose mode
dwl-train --model bert-base-uncased --dataset imdb --quiet
# Use custom backend URL
dwl-train --model bert-base-uncased --dataset ag_news
# List available options
dwl-train --list-models
dwl-train --list-datasets
# Get help
dwl-train --help
```
## Features
- **Easy to use**: Simple command-line interface
- **Flexible**: All training parameters configurable
- **Real-time streaming**: See training progress as it happens
- **Multiple models**: Support for BERT, RoBERTa, DistilBERT, and more
- **Multiple datasets**: 12+ text classification datasets
- **Remote support**: Can connect to any backend URL
## Available Models
- bert-base-uncased
- bert-large-uncased
- roberta-base
- roberta-large
- distilbert-base-uncased
- albert-base-v2
- xlnet-base-cased
## Available Datasets
- ag_news
- dbpedia_14
- yahoo_answers_topics
- yelp_review_full
- yelp_polarity
- amazon_polarity
- trec
- emotion
- go_emotions
- imdb
- banking77
- rotten_tomatoes
## License
MIT License
Raw data
{
"_id": null,
"home_page": "https://zhuomingli000.github.io/dwlapp",
"name": "dwl-cli",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "deep-learning, machine-learning, nlp, transformers, training",
"author": "Eury AI Team",
"author_email": "zhuoming.li01@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/e7/57/a3bc30dfa920e673885e4b27de66cfcf5a585da4a1bad30e7910c19523ef/dwl_cli-1.0.0.tar.gz",
"platform": null,
"description": "# DWL CLI Tool\n\nCommand-line interface for training DWL (Deep Weight Learning) models.\n\n## Installation\n\n```bash\npip install dwl-cli\n```\n\n## Usage\n\n```bash\n# Basic DWL training\ndwl-train --model bert-base-uncased --dataset yahoo_answers_topics\n\n# Traditional training with custom parameters\ndwl-train --model roberta-base --dataset ag_news --method traditional --epochs 50 --lr 0.0001\n\n# DWL training with custom components\ndwl-train --model distilbert-base-uncased --dataset emotion --components 100 --epochs 30\n\n# Non-verbose mode\ndwl-train --model bert-base-uncased --dataset imdb --quiet\n\n# Use custom backend URL\ndwl-train --model bert-base-uncased --dataset ag_news\n\n# List available options\ndwl-train --list-models\ndwl-train --list-datasets\n\n# Get help\ndwl-train --help\n```\n\n## Features\n\n- **Easy to use**: Simple command-line interface\n- **Flexible**: All training parameters configurable\n- **Real-time streaming**: See training progress as it happens\n- **Multiple models**: Support for BERT, RoBERTa, DistilBERT, and more\n- **Multiple datasets**: 12+ text classification datasets\n- **Remote support**: Can connect to any backend URL\n\n## Available Models\n\n- bert-base-uncased\n- bert-large-uncased\n- roberta-base\n- roberta-large\n- distilbert-base-uncased\n- albert-base-v2\n- xlnet-base-cased\n\n## Available Datasets\n\n- ag_news\n- dbpedia_14\n- yahoo_answers_topics\n- yelp_review_full\n- yelp_polarity\n- amazon_polarity\n- trec\n- emotion\n- go_emotions\n- imdb\n- banking77\n- rotten_tomatoes\n\n## License\n\nMIT License\n",
"bugtrack_url": null,
"license": null,
"summary": "Command-line interface for fast model training",
"version": "1.0.0",
"project_urls": {
"Homepage": "https://zhuomingli000.github.io/dwlapp"
},
"split_keywords": [
"deep-learning",
" machine-learning",
" nlp",
" transformers",
" training"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "a5cde7ff344a7b1875ec41ed0da6d1a82d53f4bb380dbd35ed9c8d85ab991681",
"md5": "d97349c1a766140cac50d147ca1f9e2b",
"sha256": "fed2c3da8d1f58763394366ccd9f8de65bc32efb828bf9e878ad853fce36ccc1"
},
"downloads": -1,
"filename": "dwl_cli-1.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d97349c1a766140cac50d147ca1f9e2b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 5394,
"upload_time": "2025-08-16T16:12:54",
"upload_time_iso_8601": "2025-08-16T16:12:54.921256Z",
"url": "https://files.pythonhosted.org/packages/a5/cd/e7ff344a7b1875ec41ed0da6d1a82d53f4bb380dbd35ed9c8d85ab991681/dwl_cli-1.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e757a3bc30dfa920e673885e4b27de66cfcf5a585da4a1bad30e7910c19523ef",
"md5": "f8cc1396fcc0fb6d340e9bf264b74623",
"sha256": "c9a797676a9276c7abfd29669013cbd5ef74e2daf28f176ad446ad0f75bd2701"
},
"downloads": -1,
"filename": "dwl_cli-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "f8cc1396fcc0fb6d340e9bf264b74623",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 5222,
"upload_time": "2025-08-16T16:12:55",
"upload_time_iso_8601": "2025-08-16T16:12:55.888432Z",
"url": "https://files.pythonhosted.org/packages/e7/57/a3bc30dfa920e673885e4b27de66cfcf5a585da4a1bad30e7910c19523ef/dwl_cli-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-16 16:12:55",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "dwl-cli"
}