Name | dyson-equalizer JSON |
Version |
0.1.6
JSON |
| download |
home_page | None |
Summary | Computes the Dyson Equalizer and related low rank approximation of the input data |
upload_time | 2024-10-25 11:35:11 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.10 |
license | None |
keywords |
dyson equalizer
low rank approximation
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Dyson Equalizer #
This package is a Python implementation of the Dyson Equalizer.
The method is described in detail in the article [The Dyson Equalizer: Adaptive Noise Stabilization for Low-Rank Signal Detection and Recovery
](https://doi.org/10.48550/arXiv.2306.11263)
The documentation is available at [https://klugerlab.github.io/DysonEqualizer](https://klugerlab.github.io/DysonEqualizer).
## Installation ##
The main version of the package can be installed as
```
pip install dyson-equalizer
```
The development version of the package can be installed as
```
pip install git+https://github.com/Klugerlab/DysonEqualizer.git
```
## Getting started ##
To import the package and apply the Dyson Equalizer to a test matrix
```python
from dyson_equalizer.examples import generate_Y_with_heteroskedastic_noise
from dyson_equalizer.dyson_equalizer import DysonEqualizer
Y = generate_Y_with_heteroskedastic_noise()
de = DysonEqualizer(Y).compute()
```
The `DysonEqualizer` result class will contain the following attributes
- `Y`: The original data matrix
- `x_hat`: The normalizing factors for the rows
- `y_hat`: The normalizing factors for the columns
- `Y_hat`: The normalized data matrix so that the variance of the error is 1
- `X_bar`: The estimated signal matrix. It has rank `r_hat`
- `r_hat`: The estimated rank of the signal matrix
- `S`: The principal values of the data matrix `Y`
- `S_hat`: The principal values of the data matrix `Y_hat`
Detailed examples are available on the [Examples](https://klugerlab.github.io/DysonEqualizer/examples.html)
page.
Raw data
{
"_id": null,
"home_page": null,
"name": "dyson-equalizer",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": "Francesco Strino <francesco.strino@pcmgf.com>",
"keywords": "Dyson Equalizer, low rank approximation",
"author": null,
"author_email": "Boris Landa <boris.landa@yale.edu>, Francesco Strino <francesco.strino@pcmgf.com>, Yuval Kluger <yuval.kluger@yale.edu>",
"download_url": "https://files.pythonhosted.org/packages/8d/33/3718f9f66c58ebbf7fefea4352490c8ae7e999a26729572623553602973f/dyson_equalizer-0.1.6.tar.gz",
"platform": null,
"description": "# Dyson Equalizer #\n\nThis package is a Python implementation of the Dyson Equalizer. \nThe method is described in detail in the article [The Dyson Equalizer: Adaptive Noise Stabilization for Low-Rank Signal Detection and Recovery\n](https://doi.org/10.48550/arXiv.2306.11263)\n\nThe documentation is available at [https://klugerlab.github.io/DysonEqualizer](https://klugerlab.github.io/DysonEqualizer).\n\n## Installation ##\nThe main version of the package can be installed as \n```\npip install dyson-equalizer\n```\n\nThe development version of the package can be installed as \n```\npip install git+https://github.com/Klugerlab/DysonEqualizer.git\n```\n\n## Getting started ##\n\nTo import the package and apply the Dyson Equalizer to a test matrix\n\n```python\nfrom dyson_equalizer.examples import generate_Y_with_heteroskedastic_noise\nfrom dyson_equalizer.dyson_equalizer import DysonEqualizer\n\nY = generate_Y_with_heteroskedastic_noise()\nde = DysonEqualizer(Y).compute()\n\n```\n\nThe `DysonEqualizer` result class will contain the following attributes\n- `Y`: The original data matrix\n- `x_hat`: The normalizing factors for the rows\n- `y_hat`: The normalizing factors for the columns\n- `Y_hat`: The normalized data matrix so that the variance of the error is 1\n- `X_bar`: The estimated signal matrix. It has rank `r_hat`\n- `r_hat`: The estimated rank of the signal matrix\n- `S`: The principal values of the data matrix `Y`\n- `S_hat`: The principal values of the data matrix `Y_hat`\n\nDetailed examples are available on the [Examples](https://klugerlab.github.io/DysonEqualizer/examples.html) \npage.\n\n",
"bugtrack_url": null,
"license": null,
"summary": "Computes the Dyson Equalizer and related low rank approximation of the input data",
"version": "0.1.6",
"project_urls": {
"Bug Tracker": "https://github.com/KlugerLab/DysonEqualizer/issues",
"Documentation": "https://github.com/KlugerLab/DysonEqualizer.git",
"Repository": "https://github.com/KlugerLab/DysonEqualizer.git"
},
"split_keywords": [
"dyson equalizer",
" low rank approximation"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b7d3c14ae98c4d024bc037e66189f863c85f143178b74f7a1abdf4190a63ade1",
"md5": "3701286632c7fe9bbcb9e4989d342b6c",
"sha256": "c9a082e667f2b3a3ce06497f2a3e49111b52f0b416fb2629660ee007e5850cd9"
},
"downloads": -1,
"filename": "dyson_equalizer-0.1.6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3701286632c7fe9bbcb9e4989d342b6c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 11692,
"upload_time": "2024-10-25T11:35:10",
"upload_time_iso_8601": "2024-10-25T11:35:10.267957Z",
"url": "https://files.pythonhosted.org/packages/b7/d3/c14ae98c4d024bc037e66189f863c85f143178b74f7a1abdf4190a63ade1/dyson_equalizer-0.1.6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8d333718f9f66c58ebbf7fefea4352490c8ae7e999a26729572623553602973f",
"md5": "2d843a5a45609040bdbe39a0546618e5",
"sha256": "ad6ea71eeb968a3071cdb041089c645ca1d78e1475625489487a276eac958879"
},
"downloads": -1,
"filename": "dyson_equalizer-0.1.6.tar.gz",
"has_sig": false,
"md5_digest": "2d843a5a45609040bdbe39a0546618e5",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 8999,
"upload_time": "2024-10-25T11:35:11",
"upload_time_iso_8601": "2024-10-25T11:35:11.553691Z",
"url": "https://files.pythonhosted.org/packages/8d/33/3718f9f66c58ebbf7fefea4352490c8ae7e999a26729572623553602973f/dyson_equalizer-0.1.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-25 11:35:11",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "KlugerLab",
"github_project": "DysonEqualizer",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "dyson-equalizer"
}