dyson-equalizer


Namedyson-equalizer JSON
Version 0.1.6 PyPI version JSON
download
home_pageNone
SummaryComputes the Dyson Equalizer and related low rank approximation of the input data
upload_time2024-10-25 11:35:11
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords dyson equalizer low rank approximation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Dyson Equalizer #

This package is a Python implementation of the Dyson Equalizer. 
The method is described in detail in the article [The Dyson Equalizer: Adaptive Noise Stabilization for Low-Rank Signal Detection and Recovery
](https://doi.org/10.48550/arXiv.2306.11263)

The documentation is available at [https://klugerlab.github.io/DysonEqualizer](https://klugerlab.github.io/DysonEqualizer).

## Installation ##
The main version of the package can be installed as 
```
pip install dyson-equalizer
```

The development version of the package can be installed as 
```
pip install git+https://github.com/Klugerlab/DysonEqualizer.git
```

## Getting started ##

To import the package and apply the Dyson Equalizer to a test matrix

```python
from dyson_equalizer.examples import generate_Y_with_heteroskedastic_noise
from dyson_equalizer.dyson_equalizer import DysonEqualizer

Y = generate_Y_with_heteroskedastic_noise()
de = DysonEqualizer(Y).compute()

```

The `DysonEqualizer` result class will contain the following attributes
- `Y`: The original data matrix
- `x_hat`: The normalizing factors for the rows
- `y_hat`: The normalizing factors for the columns
- `Y_hat`: The normalized data matrix so that the variance of the error is 1
- `X_bar`: The estimated signal matrix. It has rank `r_hat`
- `r_hat`:  The estimated rank of the signal matrix
- `S`: The principal values of the data matrix `Y`
- `S_hat`:  The principal values of the data matrix `Y_hat`

Detailed examples are available on the [Examples](https://klugerlab.github.io/DysonEqualizer/examples.html) 
page.


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "dyson-equalizer",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "Francesco Strino <francesco.strino@pcmgf.com>",
    "keywords": "Dyson Equalizer, low rank approximation",
    "author": null,
    "author_email": "Boris Landa <boris.landa@yale.edu>, Francesco Strino <francesco.strino@pcmgf.com>, Yuval Kluger <yuval.kluger@yale.edu>",
    "download_url": "https://files.pythonhosted.org/packages/8d/33/3718f9f66c58ebbf7fefea4352490c8ae7e999a26729572623553602973f/dyson_equalizer-0.1.6.tar.gz",
    "platform": null,
    "description": "# Dyson Equalizer #\n\nThis package is a Python implementation of the Dyson Equalizer. \nThe method is described in detail in the article [The Dyson Equalizer: Adaptive Noise Stabilization for Low-Rank Signal Detection and Recovery\n](https://doi.org/10.48550/arXiv.2306.11263)\n\nThe documentation is available at [https://klugerlab.github.io/DysonEqualizer](https://klugerlab.github.io/DysonEqualizer).\n\n## Installation ##\nThe main version of the package can be installed as \n```\npip install dyson-equalizer\n```\n\nThe development version of the package can be installed as \n```\npip install git+https://github.com/Klugerlab/DysonEqualizer.git\n```\n\n## Getting started ##\n\nTo import the package and apply the Dyson Equalizer to a test matrix\n\n```python\nfrom dyson_equalizer.examples import generate_Y_with_heteroskedastic_noise\nfrom dyson_equalizer.dyson_equalizer import DysonEqualizer\n\nY = generate_Y_with_heteroskedastic_noise()\nde = DysonEqualizer(Y).compute()\n\n```\n\nThe `DysonEqualizer` result class will contain the following attributes\n- `Y`: The original data matrix\n- `x_hat`: The normalizing factors for the rows\n- `y_hat`: The normalizing factors for the columns\n- `Y_hat`: The normalized data matrix so that the variance of the error is 1\n- `X_bar`: The estimated signal matrix. It has rank `r_hat`\n- `r_hat`:  The estimated rank of the signal matrix\n- `S`: The principal values of the data matrix `Y`\n- `S_hat`:  The principal values of the data matrix `Y_hat`\n\nDetailed examples are available on the [Examples](https://klugerlab.github.io/DysonEqualizer/examples.html) \npage.\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Computes the Dyson Equalizer and related low rank approximation of the input data",
    "version": "0.1.6",
    "project_urls": {
        "Bug Tracker": "https://github.com/KlugerLab/DysonEqualizer/issues",
        "Documentation": "https://github.com/KlugerLab/DysonEqualizer.git",
        "Repository": "https://github.com/KlugerLab/DysonEqualizer.git"
    },
    "split_keywords": [
        "dyson equalizer",
        " low rank approximation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b7d3c14ae98c4d024bc037e66189f863c85f143178b74f7a1abdf4190a63ade1",
                "md5": "3701286632c7fe9bbcb9e4989d342b6c",
                "sha256": "c9a082e667f2b3a3ce06497f2a3e49111b52f0b416fb2629660ee007e5850cd9"
            },
            "downloads": -1,
            "filename": "dyson_equalizer-0.1.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3701286632c7fe9bbcb9e4989d342b6c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 11692,
            "upload_time": "2024-10-25T11:35:10",
            "upload_time_iso_8601": "2024-10-25T11:35:10.267957Z",
            "url": "https://files.pythonhosted.org/packages/b7/d3/c14ae98c4d024bc037e66189f863c85f143178b74f7a1abdf4190a63ade1/dyson_equalizer-0.1.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8d333718f9f66c58ebbf7fefea4352490c8ae7e999a26729572623553602973f",
                "md5": "2d843a5a45609040bdbe39a0546618e5",
                "sha256": "ad6ea71eeb968a3071cdb041089c645ca1d78e1475625489487a276eac958879"
            },
            "downloads": -1,
            "filename": "dyson_equalizer-0.1.6.tar.gz",
            "has_sig": false,
            "md5_digest": "2d843a5a45609040bdbe39a0546618e5",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 8999,
            "upload_time": "2024-10-25T11:35:11",
            "upload_time_iso_8601": "2024-10-25T11:35:11.553691Z",
            "url": "https://files.pythonhosted.org/packages/8d/33/3718f9f66c58ebbf7fefea4352490c8ae7e999a26729572623553602973f/dyson_equalizer-0.1.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-25 11:35:11",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "KlugerLab",
    "github_project": "DysonEqualizer",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "dyson-equalizer"
}
        
Elapsed time: 1.16529s