# Dysweep
Dysweep is a Python library enhancing the functionalities of the [Weights and Biases sweep library](https://docs.wandb.ai/guides/sweeps). It allows entire experiments to be executed using a configuration dictionary (YAML/JSON).
## Features
- **Checkpointing for the Sweep Server**: Dysweep introduces checkpointing that allows resuming certain runs, useful when only a small fraction of runs fail, eliminating the need to re-run the entire sweep.
- **Running Sweeps Over Hierarchies**: Dysweep supports hierarchically structured parameters, thereby eliminating the need for hard-coding the selection between different classes.
Dysweep is inspired by [DyPy](https://github.com/vahidzee/dypy), offering a versatile configuration set that empowers defining experiments at any layer of abstraction.
## Applications
Dysweep aids in large-scale hyperparameter tuning across various models/methods and running models over different configurations and datasets. It provides a systematic way to define a sweep in WandB, allowing parallel execution of experiments.
Raw data
{
"_id": null,
"home_page": "https://github.com/HamidrezaKmK/dysweep",
"name": "dysweep",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "",
"keywords": "dynamic configurations,large scale experiments,deep learning,sweeps,hyperparameter tuning,lazy evaluation",
"author": "Hamid Kamkari",
"author_email": "hamidrezakamkari@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/76/5a/546407c70433def70446d86e4170971e3c877ad3ed4bea958640db3e5697/dysweep-0.1.6.tar.gz",
"platform": null,
"description": "# Dysweep\n\nDysweep is a Python library enhancing the functionalities of the [Weights and Biases sweep library](https://docs.wandb.ai/guides/sweeps). It allows entire experiments to be executed using a configuration dictionary (YAML/JSON).\n\n## Features\n\n- **Checkpointing for the Sweep Server**: Dysweep introduces checkpointing that allows resuming certain runs, useful when only a small fraction of runs fail, eliminating the need to re-run the entire sweep.\n\n- **Running Sweeps Over Hierarchies**: Dysweep supports hierarchically structured parameters, thereby eliminating the need for hard-coding the selection between different classes.\n\nDysweep is inspired by [DyPy](https://github.com/vahidzee/dypy), offering a versatile configuration set that empowers defining experiments at any layer of abstraction.\n\n## Applications\n\nDysweep aids in large-scale hyperparameter tuning across various models/methods and running models over different configurations and datasets. It provides a systematic way to define a sweep in WandB, allowing parallel execution of experiments.\n\n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Use Weights and Biases Sweeps for Dynamic Configuration generation.",
"version": "0.1.6",
"project_urls": {
"Homepage": "https://github.com/HamidrezaKmK/dysweep"
},
"split_keywords": [
"dynamic configurations",
"large scale experiments",
"deep learning",
"sweeps",
"hyperparameter tuning",
"lazy evaluation"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b01cadf5d156d42676e546593ef716b0ae2dbd4075e1621ae73118c1a975bfd1",
"md5": "b0f04d701f55866eaa7a4e4b62342e92",
"sha256": "1047a1813130712817e0f3fb9b15b8517741a66437b078449d55d51638c30585"
},
"downloads": -1,
"filename": "dysweep-0.1.6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b0f04d701f55866eaa7a4e4b62342e92",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 18779,
"upload_time": "2023-11-15T22:43:39",
"upload_time_iso_8601": "2023-11-15T22:43:39.853378Z",
"url": "https://files.pythonhosted.org/packages/b0/1c/adf5d156d42676e546593ef716b0ae2dbd4075e1621ae73118c1a975bfd1/dysweep-0.1.6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "765a546407c70433def70446d86e4170971e3c877ad3ed4bea958640db3e5697",
"md5": "a7d9eb1f9f6dad0fde13de76ff679c18",
"sha256": "58656f86776f981bcb6d7ca330982685ec46fc35333a8ab4db4251c12b3e1abd"
},
"downloads": -1,
"filename": "dysweep-0.1.6.tar.gz",
"has_sig": false,
"md5_digest": "a7d9eb1f9f6dad0fde13de76ff679c18",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 20541,
"upload_time": "2023-11-15T22:43:41",
"upload_time_iso_8601": "2023-11-15T22:43:41.509672Z",
"url": "https://files.pythonhosted.org/packages/76/5a/546407c70433def70446d86e4170971e3c877ad3ed4bea958640db3e5697/dysweep-0.1.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-11-15 22:43:41",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "HamidrezaKmK",
"github_project": "dysweep",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "dysweep"
}