Name | e3md JSON |
Version |
0.2.0
JSON |
| download |
home_page | None |
Summary | Library for machine learning on physical tensors |
upload_time | 2025-07-20 21:42:22 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.9 |
license | None |
keywords |
machine learning
e3nn-jax
physics
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
E3MD
====
.. image:: https://codecov.io/gh/muhrin/e3md/branch/develop/graph/badge.svg
:target: https://codecov.io/gh/muhrin/e3md
:alt: Coverage
.. image:: https://github.com/muhrin/e3md/actions/workflows/ci.yml/badge.svg
:target: https://github.com/muhrin/e3md/actions/workflows/ci.yml
:alt: Tests
.. image:: https://img.shields.io/pypi/v/e3md.svg
:target: https://pypi.python.org/pypi/e3md/
:alt: Latest Version
.. image:: https://img.shields.io/pypi/wheel/e3md.svg
:target: https://pypi.python.org/pypi/e3md/
.. image:: https://img.shields.io/pypi/pyversions/e3md.svg
:target: https://pypi.python.org/pypi/e3md/
.. image:: https://img.shields.io/pypi/l/e3md.svg
:target: https://pypi.python.org/pypi/e3md/
E3MD is an open-source code for building E(3)-equivariant interatomic potentials written in JAX,
based on the ``tensorial`` and ``reax`` libraries.
Quick start
-----------
.. code-block:: shell
pip install e3md
Raw data
{
"_id": null,
"home_page": null,
"name": "e3md",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "machine learning, e3nn-jax, physics",
"author": null,
"author_email": "Martin Uhrin <martin.uhrin.10@ucl.ac.uk>",
"download_url": "https://files.pythonhosted.org/packages/ca/c4/7bbaa7fd3ea04056799c6a02a40570d6456d79536465bd89e358998f72db/e3md-0.2.0.tar.gz",
"platform": null,
"description": "E3MD\n====\n\n.. image:: https://codecov.io/gh/muhrin/e3md/branch/develop/graph/badge.svg\n :target: https://codecov.io/gh/muhrin/e3md\n :alt: Coverage\n\n.. image:: https://github.com/muhrin/e3md/actions/workflows/ci.yml/badge.svg\n :target: https://github.com/muhrin/e3md/actions/workflows/ci.yml\n :alt: Tests\n\n.. image:: https://img.shields.io/pypi/v/e3md.svg\n :target: https://pypi.python.org/pypi/e3md/\n :alt: Latest Version\n\n.. image:: https://img.shields.io/pypi/wheel/e3md.svg\n :target: https://pypi.python.org/pypi/e3md/\n\n.. image:: https://img.shields.io/pypi/pyversions/e3md.svg\n :target: https://pypi.python.org/pypi/e3md/\n\n.. image:: https://img.shields.io/pypi/l/e3md.svg\n :target: https://pypi.python.org/pypi/e3md/\n\nE3MD is an open-source code for building E(3)-equivariant interatomic potentials written in JAX,\nbased on the ``tensorial`` and ``reax`` libraries.\n\n\nQuick start\n-----------\n\n.. code-block:: shell\n\n pip install e3md\n",
"bugtrack_url": null,
"license": null,
"summary": "Library for machine learning on physical tensors",
"version": "0.2.0",
"project_urls": {
"Home": "https://github.com/muhrin/e3md",
"Source": "https://github.com/muhrin/e3md"
},
"split_keywords": [
"machine learning",
" e3nn-jax",
" physics"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "01fbe28d8cd40a34355be18cc0698e24af3e66a99dd743bd6152770b56d304e1",
"md5": "51d31e7e4f016a2fc46f25c017741a3e",
"sha256": "07a10fa61c5407866f000f72913c3eb73ba6eea3db6e986d9c2c4f52ad0f294f"
},
"downloads": -1,
"filename": "e3md-0.2.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "51d31e7e4f016a2fc46f25c017741a3e",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 36420,
"upload_time": "2025-07-20T21:42:21",
"upload_time_iso_8601": "2025-07-20T21:42:21.069890Z",
"url": "https://files.pythonhosted.org/packages/01/fb/e28d8cd40a34355be18cc0698e24af3e66a99dd743bd6152770b56d304e1/e3md-0.2.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "cac47bbaa7fd3ea04056799c6a02a40570d6456d79536465bd89e358998f72db",
"md5": "a8ba819e1d993a66fcfbd45ee85f0e9d",
"sha256": "0e62f6656507994bb2132ead634005ba0f7c796ba3d91aa87e2e32523e42fca9"
},
"downloads": -1,
"filename": "e3md-0.2.0.tar.gz",
"has_sig": false,
"md5_digest": "a8ba819e1d993a66fcfbd45ee85f0e9d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 30116,
"upload_time": "2025-07-20T21:42:22",
"upload_time_iso_8601": "2025-07-20T21:42:22.753425Z",
"url": "https://files.pythonhosted.org/packages/ca/c4/7bbaa7fd3ea04056799c6a02a40570d6456d79536465bd89e358998f72db/e3md-0.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-20 21:42:22",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "muhrin",
"github_project": "e3md",
"github_not_found": true,
"lcname": "e3md"
}