e3x


Namee3x JSON
Version 1.0.2 PyPI version JSON
download
home_pageNone
SummaryJAX-Library for building E(3)-equivariant deep learning architectures based on Flax.
upload_time2024-04-05 09:29:18
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseNone
keywords equivariance equivariant invariance invariant e(3) se(3) o(3) so(3) euclidean orthogonal group translation translational rotation rotational roto-translation roto-translational reflection neural network machine learning deep learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
<img src="https://raw.githubusercontent.com/google-research/e3x/main/docs/source/_static/logo.svg" alt="logo" width="200"></img>
</div>

# E3x: E(3)-Equivariant Deep Learning Made Easy

![Autopublish Workflow](https://github.com/google-research/e3x/actions/workflows/pytest_and_autopublish.yml/badge.svg)
![PyPI version](https://img.shields.io/pypi/v/e3x)
[![Documentation Status](https://readthedocs.org/projects/e3x/badge/?version=latest)](https://e3x.readthedocs.io/en/latest/?badge=latest)

[E3x](https://e3x.readthedocs.io) is a [JAX](https://jax.readthedocs.io) library
for constructing efficient E(3)-equivariant deep learning architectures built on
top of [Flax](https://flax.readthedocs.io).

The goal is to provide common neural network building blocks for
E(3)-equivariant architectures to make the development of models operating on
three-dimensional data (point clouds, polygon meshes, etc.) easier.

This is not an officially supported Google product.

## Installation

The easiest way to install E3x is via the Python Package Index (PyPI). Simply
run
```console
> python -m pip install --upgrade e3x
```
and you should be good to go.

Alternatively, you can clone this repository, enter the directory and run:
```console
> python -m pip install .
```

If you are a developer, you might want to also install the optional development
dependencies by running
```console
> python -m pip install .[dev]
```
instead.

## Documentation

Documentation for E3x, including usage examples and tutorials can be found
[here](https://e3x.readthedocs.io). For a more detailed overview over the
mathematical theory behind E3x, please refer to
[this paper](https://arxiv.org/abs/2401.07595).

## Citing E3x

If you find E3x useful and use it in your work, please cite:
```
@article{unke2024e3x,
  title={\texttt{E3x}: $\mathrm{E}(3)$-Equivariant Deep Learning Made Easy},
  author={Unke, Oliver T. and Maennel, Hartmut},
  journal={arXiv preprint arXiv:2401.07595},
  year={2024}
}
```


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "e3x",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "equivariance, equivariant, invariance, invariant, E(3), SE(3), O(3), SO(3), Euclidean, Orthogonal, group, translation, translational, rotation, rotational, roto-translation, roto-translational, reflection, neural network, machine learning, deep learning",
    "author": null,
    "author_email": "The e3x Authors <qcml@google.com>",
    "download_url": "https://files.pythonhosted.org/packages/ff/97/ee128e98124de0bc9d7a577b720cf1ba01915b60707352c5afd5f600b7de/e3x-1.0.2.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n<img src=\"https://raw.githubusercontent.com/google-research/e3x/main/docs/source/_static/logo.svg\" alt=\"logo\" width=\"200\"></img>\n</div>\n\n# E3x: E(3)-Equivariant Deep Learning Made Easy\n\n![Autopublish Workflow](https://github.com/google-research/e3x/actions/workflows/pytest_and_autopublish.yml/badge.svg)\n![PyPI version](https://img.shields.io/pypi/v/e3x)\n[![Documentation Status](https://readthedocs.org/projects/e3x/badge/?version=latest)](https://e3x.readthedocs.io/en/latest/?badge=latest)\n\n[E3x](https://e3x.readthedocs.io) is a [JAX](https://jax.readthedocs.io) library\nfor constructing efficient E(3)-equivariant deep learning architectures built on\ntop of [Flax](https://flax.readthedocs.io).\n\nThe goal is to provide common neural network building blocks for\nE(3)-equivariant architectures to make the development of models operating on\nthree-dimensional data (point clouds, polygon meshes, etc.) easier.\n\nThis is not an officially supported Google product.\n\n## Installation\n\nThe easiest way to install E3x is via the Python Package Index (PyPI). Simply\nrun\n```console\n> python -m pip install --upgrade e3x\n```\nand you should be good to go.\n\nAlternatively, you can clone this repository, enter the directory and run:\n```console\n> python -m pip install .\n```\n\nIf you are a developer, you might want to also install the optional development\ndependencies by running\n```console\n> python -m pip install .[dev]\n```\ninstead.\n\n## Documentation\n\nDocumentation for E3x, including usage examples and tutorials can be found\n[here](https://e3x.readthedocs.io). For a more detailed overview over the\nmathematical theory behind E3x, please refer to\n[this paper](https://arxiv.org/abs/2401.07595).\n\n## Citing E3x\n\nIf you find E3x useful and use it in your work, please cite:\n```\n@article{unke2024e3x,\n  title={\\texttt{E3x}: $\\mathrm{E}(3)$-Equivariant Deep Learning Made Easy},\n  author={Unke, Oliver T. and Maennel, Hartmut},\n  journal={arXiv preprint arXiv:2401.07595},\n  year={2024}\n}\n```\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "JAX-Library for building E(3)-equivariant deep learning architectures based on Flax.",
    "version": "1.0.2",
    "project_urls": {
        "homepage": "https://github.com/google-research/e3x",
        "repository": "https://github.com/google-research/e3x"
    },
    "split_keywords": [
        "equivariance",
        " equivariant",
        " invariance",
        " invariant",
        " e(3)",
        " se(3)",
        " o(3)",
        " so(3)",
        " euclidean",
        " orthogonal",
        " group",
        " translation",
        " translational",
        " rotation",
        " rotational",
        " roto-translation",
        " roto-translational",
        " reflection",
        " neural network",
        " machine learning",
        " deep learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "118f6c7700328e3942d32032c539092499a1d2e784b226c39ea7662d97d208d6",
                "md5": "9c256c40740e3027bd6c93aed6d59243",
                "sha256": "b18e519bb87f83e3319e735277a595f0cddca2d6fe30dfb7255f63fef86b0e7b"
            },
            "downloads": -1,
            "filename": "e3x-1.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9c256c40740e3027bd6c93aed6d59243",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 95326612,
            "upload_time": "2024-04-05T09:29:12",
            "upload_time_iso_8601": "2024-04-05T09:29:12.540239Z",
            "url": "https://files.pythonhosted.org/packages/11/8f/6c7700328e3942d32032c539092499a1d2e784b226c39ea7662d97d208d6/e3x-1.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ff97ee128e98124de0bc9d7a577b720cf1ba01915b60707352c5afd5f600b7de",
                "md5": "f33cba932c8d23c8972d41cea4372bc6",
                "sha256": "3538cd7ad3a98de023e5cda738fff172e7e8c10b381b9e0dbc9c16b88b0385cb"
            },
            "downloads": -1,
            "filename": "e3x-1.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "f33cba932c8d23c8972d41cea4372bc6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 95303732,
            "upload_time": "2024-04-05T09:29:18",
            "upload_time_iso_8601": "2024-04-05T09:29:18.709661Z",
            "url": "https://files.pythonhosted.org/packages/ff/97/ee128e98124de0bc9d7a577b720cf1ba01915b60707352c5afd5f600b7de/e3x-1.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-05 09:29:18",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "google-research",
    "github_project": "e3x",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "e3x"
}
        
Elapsed time: 1.04479s