[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)
# Connecting Large Language Models with Evolutionary Algorithms Yields Powerful Prompt Optimizers
Agora's open source implementation of the paper: Connecting Large Language Models with Evolutionary Algorithms Yields Powerful Prompt Optimizers
[PAPER LINK](https://arxiv.org/pdf/2309.08532.pdf)
## Installation
You can install the package using pip
# Citation
```BibTeX
@misc{2309.08532,
Author = {Qingyan Guo and Rui Wang and Junliang Guo and Bei Li and Kaitao Song and Xu Tan and Guoqing Liu and Jiang Bian and Yujiu Yang},
Title = {Connecting Large Language Models with Evolutionary Algorithms Yields Powerful Prompt Optimizers},
Year = {2023},
Eprint = {arXiv:2309.08532},
}
```
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/eaot",
"name": "eaot",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6,<4.0",
"maintainer_email": "",
"keywords": "artificial intelligence,deep learning,optimizers,Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/ce/34/455d18e6b020bbadce98072c9e1bc4ed9a3477a3fa22433f6fd8762667e6/eaot-0.0.1.tar.gz",
"platform": null,
"description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# Connecting Large Language Models with Evolutionary Algorithms Yields Powerful Prompt Optimizers\nAgora's open source implementation of the paper: Connecting Large Language Models with Evolutionary Algorithms Yields Powerful Prompt Optimizers\n\n[PAPER LINK](https://arxiv.org/pdf/2309.08532.pdf)\n\n## Installation\n\nYou can install the package using pip\n\n# Citation\n```BibTeX\n@misc{2309.08532,\nAuthor = {Qingyan Guo and Rui Wang and Junliang Guo and Bei Li and Kaitao Song and Xu Tan and Guoqing Liu and Jiang Bian and Yujiu Yang},\nTitle = {Connecting Large Language Models with Evolutionary Algorithms Yields Powerful Prompt Optimizers},\nYear = {2023},\nEprint = {arXiv:2309.08532},\n}\n```",
"bugtrack_url": null,
"license": "MIT",
"summary": "Paper - Pytorch",
"version": "0.0.1",
"project_urls": {
"Homepage": "https://github.com/kyegomez/eaot",
"Repository": "https://github.com/kyegomez/eaot"
},
"split_keywords": [
"artificial intelligence",
"deep learning",
"optimizers",
"prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "eb75a19d6b144e65406d701c8246954c285aa542b19a58d7fb8105b225e96ba1",
"md5": "c75201e9e4bc9bbd2af28a4e4f673446",
"sha256": "4515e3de59ca1a690961c2c8824e101cc8919d31f619b50d0d77dd91bc40e5b4"
},
"downloads": -1,
"filename": "eaot-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c75201e9e4bc9bbd2af28a4e4f673446",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6,<4.0",
"size": 2374,
"upload_time": "2023-09-21T02:44:20",
"upload_time_iso_8601": "2023-09-21T02:44:20.892214Z",
"url": "https://files.pythonhosted.org/packages/eb/75/a19d6b144e65406d701c8246954c285aa542b19a58d7fb8105b225e96ba1/eaot-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ce34455d18e6b020bbadce98072c9e1bc4ed9a3477a3fa22433f6fd8762667e6",
"md5": "eeb9bb9c57a5ba90f798bd2babcf2b32",
"sha256": "05399c8b0e7919de3317b181652c0b80ff645399b73263bb2af581f39c22f8af"
},
"downloads": -1,
"filename": "eaot-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "eeb9bb9c57a5ba90f798bd2babcf2b32",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6,<4.0",
"size": 2376,
"upload_time": "2023-09-21T02:44:22",
"upload_time_iso_8601": "2023-09-21T02:44:22.641363Z",
"url": "https://files.pythonhosted.org/packages/ce/34/455d18e6b020bbadce98072c9e1bc4ed9a3477a3fa22433f6fd8762667e6/eaot-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-09-21 02:44:22",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "eaot",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "eaot"
}