eaot


Nameeaot JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/kyegomez/eaot
SummaryPaper - Pytorch
upload_time2023-09-21 02:44:22
maintainer
docs_urlNone
authorKye Gomez
requires_python>=3.6,<4.0
licenseMIT
keywords artificial intelligence deep learning optimizers prompt engineering
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)

# Connecting Large Language Models with Evolutionary Algorithms Yields Powerful Prompt Optimizers
Agora's open source implementation of the paper: Connecting Large Language Models with Evolutionary Algorithms Yields Powerful Prompt Optimizers

[PAPER LINK](https://arxiv.org/pdf/2309.08532.pdf)

## Installation

You can install the package using pip

# Citation
```BibTeX
@misc{2309.08532,
Author = {Qingyan Guo and Rui Wang and Junliang Guo and Bei Li and Kaitao Song and Xu Tan and Guoqing Liu and Jiang Bian and Yujiu Yang},
Title = {Connecting Large Language Models with Evolutionary Algorithms Yields Powerful Prompt Optimizers},
Year = {2023},
Eprint = {arXiv:2309.08532},
}
```
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kyegomez/eaot",
    "name": "eaot",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6,<4.0",
    "maintainer_email": "",
    "keywords": "artificial intelligence,deep learning,optimizers,Prompt Engineering",
    "author": "Kye Gomez",
    "author_email": "kye@apac.ai",
    "download_url": "https://files.pythonhosted.org/packages/ce/34/455d18e6b020bbadce98072c9e1bc4ed9a3477a3fa22433f6fd8762667e6/eaot-0.0.1.tar.gz",
    "platform": null,
    "description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# Connecting Large Language Models with Evolutionary Algorithms Yields Powerful Prompt Optimizers\nAgora's open source implementation of the paper: Connecting Large Language Models with Evolutionary Algorithms Yields Powerful Prompt Optimizers\n\n[PAPER LINK](https://arxiv.org/pdf/2309.08532.pdf)\n\n## Installation\n\nYou can install the package using pip\n\n# Citation\n```BibTeX\n@misc{2309.08532,\nAuthor = {Qingyan Guo and Rui Wang and Junliang Guo and Bei Li and Kaitao Song and Xu Tan and Guoqing Liu and Jiang Bian and Yujiu Yang},\nTitle = {Connecting Large Language Models with Evolutionary Algorithms Yields Powerful Prompt Optimizers},\nYear = {2023},\nEprint = {arXiv:2309.08532},\n}\n```",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Paper - Pytorch",
    "version": "0.0.1",
    "project_urls": {
        "Homepage": "https://github.com/kyegomez/eaot",
        "Repository": "https://github.com/kyegomez/eaot"
    },
    "split_keywords": [
        "artificial intelligence",
        "deep learning",
        "optimizers",
        "prompt engineering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "eb75a19d6b144e65406d701c8246954c285aa542b19a58d7fb8105b225e96ba1",
                "md5": "c75201e9e4bc9bbd2af28a4e4f673446",
                "sha256": "4515e3de59ca1a690961c2c8824e101cc8919d31f619b50d0d77dd91bc40e5b4"
            },
            "downloads": -1,
            "filename": "eaot-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c75201e9e4bc9bbd2af28a4e4f673446",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6,<4.0",
            "size": 2374,
            "upload_time": "2023-09-21T02:44:20",
            "upload_time_iso_8601": "2023-09-21T02:44:20.892214Z",
            "url": "https://files.pythonhosted.org/packages/eb/75/a19d6b144e65406d701c8246954c285aa542b19a58d7fb8105b225e96ba1/eaot-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ce34455d18e6b020bbadce98072c9e1bc4ed9a3477a3fa22433f6fd8762667e6",
                "md5": "eeb9bb9c57a5ba90f798bd2babcf2b32",
                "sha256": "05399c8b0e7919de3317b181652c0b80ff645399b73263bb2af581f39c22f8af"
            },
            "downloads": -1,
            "filename": "eaot-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "eeb9bb9c57a5ba90f798bd2babcf2b32",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6,<4.0",
            "size": 2376,
            "upload_time": "2023-09-21T02:44:22",
            "upload_time_iso_8601": "2023-09-21T02:44:22.641363Z",
            "url": "https://files.pythonhosted.org/packages/ce/34/455d18e6b020bbadce98072c9e1bc4ed9a3477a3fa22433f6fd8762667e6/eaot-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-21 02:44:22",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kyegomez",
    "github_project": "eaot",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "eaot"
}
        
Elapsed time: 0.14716s