easy-entrez


Nameeasy-entrez JSON
Version 0.3.7 PyPI version JSON
download
home_pagehttps://github.com/krassowski/easy-entrez
SummaryPython REST API for Entrez E-Utilities: stateless, easy to use, reliable.
upload_time2023-10-12 13:57:53
maintainer
docs_urlNone
authorMichal Krassowski
requires_python
licenseMIT
keywords entrez pubmed e-utilities ncbi rest api dbsnp literature mining
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # easy-entrez

![tests](https://github.com/krassowski/easy-entrez/workflows/tests/badge.svg)
![CodeQL](https://github.com/krassowski/easy-entrez/workflows/CodeQL/badge.svg)
[![Documentation Status](https://readthedocs.org/projects/easy-entrez/badge/?version=latest)](https://easy-entrez.readthedocs.io/en/latest/?badge=latest)
[![DOI](https://zenodo.org/badge/272182307.svg)](https://zenodo.org/badge/latestdoi/272182307)

Python REST API for Entrez E-Utilities, aiming to  be easy to use and reliable.

Easy-entrez:

- makes common tasks easy thanks to simple Pythonic API,
- is typed and integrates well with mypy,
- is tested on Windows, Mac and Linux across Python 3.7, 3.8, 3.9, 3.10 and 3.11
- is limited in scope, allowing to focus on the reliability of the core code,
- does not use the stateful API as it is [error-prone](https://gitlab.com/ncbipy/entrezpy/-/issues/7) as seen on example of the alternative *entrezpy*.


### Examples

```python
from easy_entrez import EntrezAPI

entrez_api = EntrezAPI(
    'your-tool-name',
    'e@mail.com',
    # optional
    return_type='json'
)

# find up to 10 000 results for cancer in human
result = entrez_api.search('cancer AND human[organism]', max_results=10_000)

# data will be populated with JSON or XML (depending on the `return_type` value)
result.data
```

See more in the [Demo notebook](./Demo.ipynb) and [documentation](https://easy-entrez.readthedocs.io/en/latest).

For a real-world example (i.e. used for [this publication](https://www.frontiersin.org/articles/10.3389/fgene.2020.610798/full)) see notebooks in [multi-omics-state-of-the-field](https://github.com/krassowski/multi-omics-state-of-the-field) repository.

#### Fetching genes for a variant from dbSNP

Fetch the SNP record for `rs6311`:

```python
rs6311 = entrez_api.fetch(['rs6311'], max_results=1, database='snp').data[0]
rs6311
```

Display the result:

```python
from easy_entrez.parsing import xml_to_string

print(xml_to_string(rs6311))
```

Find the gene names for `rs6311`:

```python
namespaces = {'ns0': 'https://www.ncbi.nlm.nih.gov/SNP/docsum'}
genes = [
    name.text
    for name in rs6311.findall('.//ns0:GENE_E/ns0:NAME', namespaces)
]
print(genes)
```

> `['HTR2A']`

Fetch data for multiple variants at once:

```python
result = entrez_api.fetch(['rs6311', 'rs662138'], max_results=10, database='snp')
gene_names = {
    'rs' + document_summary.get('uid'): [
        element.text
        for element in document_summary.findall('.//ns0:GENE_E/ns0:NAME', namespaces)
    ]
    for document_summary in result.data
}
print(gene_names)
```

> `{'rs6311': ['HTR2A'], 'rs662138': ['SLC22A1']}`

#### Obtaining the chromosomal position from SNP rsID number

```python
from pandas import DataFrame

result = entrez_api.fetch(['rs6311', 'rs662138'], max_results=10, database='snp')

variant_positions = DataFrame([
    {
        'id': 'rs' + document_summary.get('uid'),
        'chromosome': chromosome,
        'position': position
    }
    for document_summary in result.data
    for chrom_and_position in document_summary.findall('.//ns0:CHRPOS', namespaces)
    for chromosome, position in [chrom_and_position.text.split(':')]
])

variant_positions
```

> |    | id       |   chromosome |   position |
> |---:|:---------|-------------:|-----------:|
> |  0 | rs6311   |           13 |   46897343 |
> |  1 | rs662138 |            6 |  160143444 |


#### Converting full variation/mutation data to tabular format

Parsing utilities can quickly extract the data to a `VariantSet` object
holding pandas `DataFrame`s with coordinates and alternative alleles frequencies:

```python
from easy_entrez.parsing import parse_dbsnp_variants

variants = parse_dbsnp_variants(result)
variants
```

> `<VariantSet with 2 variants>`

To get the coordinates:

```python
variants.coordinates
```

> | rs_id    | ref   | alts   |   chrom |       pos |   chrom_prev |   pos_prev | consequence                                                                  |
> |:---------|:------|:-------|--------:|----------:|-------------:|-----------:|:-----------------------------------------------------------------------------|
>| rs6311   | C     | A,T    |      13 |  46897343 |           13 |   47471478 | upstream_transcript_variant,intron_variant,genic_upstream_transcript_variant |
>| rs662138 | C     | G      |       6 | 160143444 |            6 |  160564476 | intron_variant                                                               |

For frequencies:

```python
variants.alt_frequencies.head(5)  # using head to only display first 5 for brevity
```

> |    | rs_id   | allele   |   source_frequency |   total_count | study       |     count |
> |---:|:--------|:---------|-------------------:|--------------:|:------------|----------:|
> |  0 | rs6311  | T        |           0.44349  |          2221 | 1000Genomes |   984.991 |
> |  1 | rs6311  | T        |           0.411261 |          1585 | ALSPAC      |   651.849 |
> |  2 | rs6311  | T        |           0.331696 |          1486 | Estonian    |   492.9   |
> |  3 | rs6311  | T        |           0.35     |            14 | GENOME_DK   |     4.9   |
> |  4 | rs6311  | T        |           0.402529 |         56309 | GnomAD      | 22666     |


#### Obtaining the SNP rs ID number from chromosomal position

You can use the query string directly:

```python
results = entrez_api.search(
    '13[CHROMOSOME] AND human[ORGANISM] AND 31873085[POSITION]',
    database='snp',
    max_results=10
)
print(results.data['esearchresult']['idlist'])
```

> `['59296319', '17076752', '7336701', '4']`

Or pass a dictionary (no validation of arguments is performed, `AND` conjunction is used):

```python
results = entrez_api.search(
    dict(chromosome=13, organism='human', position=31873085),
    database='snp',
    max_results=10
)
print(results.data['esearchresult']['idlist'])
```

> `['59296319', '17076752', '7336701', '4']`

The base position should use the latest genome assembly (GRCh38 at the time of writing);
you can use the position in previous assembly coordinates by replacing `POSITION` with `POSITION_GRCH37`.
For more information of the arguments accepted by the SNP database see the [entrez help page](https://www.ncbi.nlm.nih.gov/snp/docs/entrez_help/) on NCBI website.

#### Obtaining amino acids change information for variants in given range

First we search for dbSNP rs identifiers for variants in given region:

```python
dbsnp_ids = (
    entrez_api
    .search(
        '12[CHROMOSOME] AND human[ORGANISM] AND 21178600:21178720[POSITION]',
        database='snp',
        max_results=100
    )
    .data
    ['esearchresult']
    ['idlist']
)
```

Then fetch the variant data for identifiers:

```python
variant_data = entrez_api.fetch(
    ['rs' + rs_id for rs_id in dbsnp_ids],
    max_results=10,
    database='snp'
)
```

And parse the data, extracting the HGVS out of summary:

```python
from easy_entrez.parsing import parse_dbsnp_variants
from pandas import Series


def select_protein_hgvs(items):
    return [
        [sequence, hgvs]
        for entry in items
        for sequence, hgvs in [entry.split(':')]
        if hgvs.startswith('p.')
    ]


protein_hgvs = (
    parse_dbsnp_variants(variant_data)
    .summary
    .HGVS
    .apply(select_protein_hgvs)
    .explode()
    .dropna()
    .apply(Series)
    .rename(columns={0: 'sequence', 1: 'hgvs'})
)
protein_hgvs.head()
```

> | rs_id        | sequence    | hgvs        |
> |:-------------|:------------|:------------|
> | rs1940853486 | NP_006437.3 | p.Gly203Ter |
> | rs1940853414 | NP_006437.3 | p.Glu202Gly |
> | rs1940853378 | NP_006437.3 | p.Glu202Lys |
> | rs1940853299 | NP_006437.3 | p.Lys201Thr |
> | rs1940852987 | NP_006437.3 | p.Asp198Glu |

#### Fetching more than 10 000 entries

Use `in_batches_of` method to fetch more than 10k entries (e.g. `variant_ids`):

```python
snps_result = (
    entrez.api
    .in_batches_of(1_000)
    .fetch(variant_ids, max_results=5_000, database='snp')
)
```

The result is a dictionary with keys being identifiers used in each batch (because the Entrez API does not always return the indentifiers back) and values representing the result. You can use `parse_dbsnp_variants` directly on this dictionary.

#### Find PubMed ID from DOI

When searching GWAS catalog PMID is needed over DOI. You can covert one to the other using:

```python
def doi_term(doi: str) -> str:
    """Prepare DOI for PubMed search"""
    doi = (
        doi
        .replace('http://', 'https://')
        .replace('https://doi.org/', '')
    )
    return f'"{doi}"[Publisher ID]'


result = entrez_api.search(
    doi_term('https://doi.org/10.3389/fcell.2021.626821'),
    database='pubmed',
    max_results=1
)
result.data['esearchresult']['idlist']
```

> `['33834021']`

### Installation

Requires Python 3.6+. Install with:


```bash
pip install easy-entrez
```

If you wish to enable (optional, tqdm-based) progress bars use:

```bash
pip install easy-entrez[with_progress_bars]
```

If you wish to enable (optional, pandas-based) parsing utilities use:

```bash
pip install easy-entrez[with_parsing_utils]
```

### Alternatives

You might want to try:

- [biopython.Entrez](https://biopython.org/docs/1.74/api/Bio.Entrez.html) - biopython is a heavy dependency, but probably good choice if you already use it
- [pubmedpy](https://github.com/dhimmel/pubmedpy) - provides interesting utilities for parsing the responses
- [entrez](https://github.com/jordibc/entrez) - appears to have a comparable scope but quite different API
- [entrezpy](https://gitlab.com/ncbipy/entrezpy) - this one did not work well for me (hence this package), but may have improved since

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/krassowski/easy-entrez",
    "name": "easy-entrez",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "entrez,pubmed,e-utilities,ncbi,rest,api,dbsnp,literature,mining",
    "author": "Michal Krassowski",
    "author_email": "krassowski.michal+pypi@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/ba/68/933e2495789257a29c0245cf5bafcb4808a369e700b75515d90a0c138ce6/easy_entrez-0.3.7.tar.gz",
    "platform": null,
    "description": "# easy-entrez\n\n![tests](https://github.com/krassowski/easy-entrez/workflows/tests/badge.svg)\n![CodeQL](https://github.com/krassowski/easy-entrez/workflows/CodeQL/badge.svg)\n[![Documentation Status](https://readthedocs.org/projects/easy-entrez/badge/?version=latest)](https://easy-entrez.readthedocs.io/en/latest/?badge=latest)\n[![DOI](https://zenodo.org/badge/272182307.svg)](https://zenodo.org/badge/latestdoi/272182307)\n\nPython REST API for Entrez E-Utilities, aiming to  be easy to use and reliable.\n\nEasy-entrez:\n\n- makes common tasks easy thanks to simple Pythonic API,\n- is typed and integrates well with mypy,\n- is tested on Windows, Mac and Linux across Python 3.7, 3.8, 3.9, 3.10 and 3.11\n- is limited in scope, allowing to focus on the reliability of the core code,\n- does not use the stateful API as it is [error-prone](https://gitlab.com/ncbipy/entrezpy/-/issues/7) as seen on example of the alternative *entrezpy*.\n\n\n### Examples\n\n```python\nfrom easy_entrez import EntrezAPI\n\nentrez_api = EntrezAPI(\n    'your-tool-name',\n    'e@mail.com',\n    # optional\n    return_type='json'\n)\n\n# find up to 10 000 results for cancer in human\nresult = entrez_api.search('cancer AND human[organism]', max_results=10_000)\n\n# data will be populated with JSON or XML (depending on the `return_type` value)\nresult.data\n```\n\nSee more in the [Demo notebook](./Demo.ipynb) and [documentation](https://easy-entrez.readthedocs.io/en/latest).\n\nFor a real-world example (i.e. used for [this publication](https://www.frontiersin.org/articles/10.3389/fgene.2020.610798/full)) see notebooks in [multi-omics-state-of-the-field](https://github.com/krassowski/multi-omics-state-of-the-field) repository.\n\n#### Fetching genes for a variant from dbSNP\n\nFetch the SNP record for `rs6311`:\n\n```python\nrs6311 = entrez_api.fetch(['rs6311'], max_results=1, database='snp').data[0]\nrs6311\n```\n\nDisplay the result:\n\n```python\nfrom easy_entrez.parsing import xml_to_string\n\nprint(xml_to_string(rs6311))\n```\n\nFind the gene names for `rs6311`:\n\n```python\nnamespaces = {'ns0': 'https://www.ncbi.nlm.nih.gov/SNP/docsum'}\ngenes = [\n    name.text\n    for name in rs6311.findall('.//ns0:GENE_E/ns0:NAME', namespaces)\n]\nprint(genes)\n```\n\n> `['HTR2A']`\n\nFetch data for multiple variants at once:\n\n```python\nresult = entrez_api.fetch(['rs6311', 'rs662138'], max_results=10, database='snp')\ngene_names = {\n    'rs' + document_summary.get('uid'): [\n        element.text\n        for element in document_summary.findall('.//ns0:GENE_E/ns0:NAME', namespaces)\n    ]\n    for document_summary in result.data\n}\nprint(gene_names)\n```\n\n> `{'rs6311': ['HTR2A'], 'rs662138': ['SLC22A1']}`\n\n#### Obtaining the chromosomal position from SNP rsID number\n\n```python\nfrom pandas import DataFrame\n\nresult = entrez_api.fetch(['rs6311', 'rs662138'], max_results=10, database='snp')\n\nvariant_positions = DataFrame([\n    {\n        'id': 'rs' + document_summary.get('uid'),\n        'chromosome': chromosome,\n        'position': position\n    }\n    for document_summary in result.data\n    for chrom_and_position in document_summary.findall('.//ns0:CHRPOS', namespaces)\n    for chromosome, position in [chrom_and_position.text.split(':')]\n])\n\nvariant_positions\n```\n\n> |    | id       |   chromosome |   position |\n> |---:|:---------|-------------:|-----------:|\n> |  0 | rs6311   |           13 |   46897343 |\n> |  1 | rs662138 |            6 |  160143444 |\n\n\n#### Converting full variation/mutation data to tabular format\n\nParsing utilities can quickly extract the data to a `VariantSet` object\nholding pandas `DataFrame`s with coordinates and alternative alleles frequencies:\n\n```python\nfrom easy_entrez.parsing import parse_dbsnp_variants\n\nvariants = parse_dbsnp_variants(result)\nvariants\n```\n\n> `<VariantSet with 2 variants>`\n\nTo get the coordinates:\n\n```python\nvariants.coordinates\n```\n\n> | rs_id    | ref   | alts   |   chrom |       pos |   chrom_prev |   pos_prev | consequence                                                                  |\n> |:---------|:------|:-------|--------:|----------:|-------------:|-----------:|:-----------------------------------------------------------------------------|\n>| rs6311   | C     | A,T    |      13 |  46897343 |           13 |   47471478 | upstream_transcript_variant,intron_variant,genic_upstream_transcript_variant |\n>| rs662138 | C     | G      |       6 | 160143444 |            6 |  160564476 | intron_variant                                                               |\n\nFor frequencies:\n\n```python\nvariants.alt_frequencies.head(5)  # using head to only display first 5 for brevity\n```\n\n> |    | rs_id   | allele   |   source_frequency |   total_count | study       |     count |\n> |---:|:--------|:---------|-------------------:|--------------:|:------------|----------:|\n> |  0 | rs6311  | T        |           0.44349  |          2221 | 1000Genomes |   984.991 |\n> |  1 | rs6311  | T        |           0.411261 |          1585 | ALSPAC      |   651.849 |\n> |  2 | rs6311  | T        |           0.331696 |          1486 | Estonian    |   492.9   |\n> |  3 | rs6311  | T        |           0.35     |            14 | GENOME_DK   |     4.9   |\n> |  4 | rs6311  | T        |           0.402529 |         56309 | GnomAD      | 22666     |\n\n\n#### Obtaining the SNP rs ID number from chromosomal position\n\nYou can use the query string directly:\n\n```python\nresults = entrez_api.search(\n    '13[CHROMOSOME] AND human[ORGANISM] AND 31873085[POSITION]',\n    database='snp',\n    max_results=10\n)\nprint(results.data['esearchresult']['idlist'])\n```\n\n> `['59296319', '17076752', '7336701', '4']`\n\nOr pass a dictionary (no validation of arguments is performed, `AND` conjunction is used):\n\n```python\nresults = entrez_api.search(\n    dict(chromosome=13, organism='human', position=31873085),\n    database='snp',\n    max_results=10\n)\nprint(results.data['esearchresult']['idlist'])\n```\n\n> `['59296319', '17076752', '7336701', '4']`\n\nThe base position should use the latest genome assembly (GRCh38 at the time of writing);\nyou can use the position in previous assembly coordinates by replacing `POSITION` with `POSITION_GRCH37`.\nFor more information of the arguments accepted by the SNP database see the [entrez help page](https://www.ncbi.nlm.nih.gov/snp/docs/entrez_help/) on NCBI website.\n\n#### Obtaining amino acids change information for variants in given range\n\nFirst we search for dbSNP rs identifiers for variants in given region:\n\n```python\ndbsnp_ids = (\n    entrez_api\n    .search(\n        '12[CHROMOSOME] AND human[ORGANISM] AND 21178600:21178720[POSITION]',\n        database='snp',\n        max_results=100\n    )\n    .data\n    ['esearchresult']\n    ['idlist']\n)\n```\n\nThen fetch the variant data for identifiers:\n\n```python\nvariant_data = entrez_api.fetch(\n    ['rs' + rs_id for rs_id in dbsnp_ids],\n    max_results=10,\n    database='snp'\n)\n```\n\nAnd parse the data, extracting the HGVS out of summary:\n\n```python\nfrom easy_entrez.parsing import parse_dbsnp_variants\nfrom pandas import Series\n\n\ndef select_protein_hgvs(items):\n    return [\n        [sequence, hgvs]\n        for entry in items\n        for sequence, hgvs in [entry.split(':')]\n        if hgvs.startswith('p.')\n    ]\n\n\nprotein_hgvs = (\n    parse_dbsnp_variants(variant_data)\n    .summary\n    .HGVS\n    .apply(select_protein_hgvs)\n    .explode()\n    .dropna()\n    .apply(Series)\n    .rename(columns={0: 'sequence', 1: 'hgvs'})\n)\nprotein_hgvs.head()\n```\n\n> | rs_id        | sequence    | hgvs        |\n> |:-------------|:------------|:------------|\n> | rs1940853486 | NP_006437.3 | p.Gly203Ter |\n> | rs1940853414 | NP_006437.3 | p.Glu202Gly |\n> | rs1940853378 | NP_006437.3 | p.Glu202Lys |\n> | rs1940853299 | NP_006437.3 | p.Lys201Thr |\n> | rs1940852987 | NP_006437.3 | p.Asp198Glu |\n\n#### Fetching more than 10 000 entries\n\nUse `in_batches_of` method to fetch more than 10k entries (e.g. `variant_ids`):\n\n```python\nsnps_result = (\n    entrez.api\n    .in_batches_of(1_000)\n    .fetch(variant_ids, max_results=5_000, database='snp')\n)\n```\n\nThe result is a dictionary with keys being identifiers used in each batch (because the Entrez API does not always return the indentifiers back) and values representing the result. You can use `parse_dbsnp_variants` directly on this dictionary.\n\n#### Find PubMed ID from DOI\n\nWhen searching GWAS catalog PMID is needed over DOI. You can covert one to the other using:\n\n```python\ndef doi_term(doi: str) -> str:\n    \"\"\"Prepare DOI for PubMed search\"\"\"\n    doi = (\n        doi\n        .replace('http://', 'https://')\n        .replace('https://doi.org/', '')\n    )\n    return f'\"{doi}\"[Publisher ID]'\n\n\nresult = entrez_api.search(\n    doi_term('https://doi.org/10.3389/fcell.2021.626821'),\n    database='pubmed',\n    max_results=1\n)\nresult.data['esearchresult']['idlist']\n```\n\n> `['33834021']`\n\n### Installation\n\nRequires Python 3.6+. Install with:\n\n\n```bash\npip install easy-entrez\n```\n\nIf you wish to enable (optional, tqdm-based) progress bars use:\n\n```bash\npip install easy-entrez[with_progress_bars]\n```\n\nIf you wish to enable (optional, pandas-based) parsing utilities use:\n\n```bash\npip install easy-entrez[with_parsing_utils]\n```\n\n### Alternatives\n\nYou might want to try:\n\n- [biopython.Entrez](https://biopython.org/docs/1.74/api/Bio.Entrez.html) - biopython is a heavy dependency, but probably good choice if you already use it\n- [pubmedpy](https://github.com/dhimmel/pubmedpy) - provides interesting utilities for parsing the responses\n- [entrez](https://github.com/jordibc/entrez) - appears to have a comparable scope but quite different API\n- [entrezpy](https://gitlab.com/ncbipy/entrezpy) - this one did not work well for me (hence this package), but may have improved since\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Python REST API for Entrez E-Utilities: stateless, easy to use, reliable.",
    "version": "0.3.7",
    "project_urls": {
        "Homepage": "https://github.com/krassowski/easy-entrez"
    },
    "split_keywords": [
        "entrez",
        "pubmed",
        "e-utilities",
        "ncbi",
        "rest",
        "api",
        "dbsnp",
        "literature",
        "mining"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a0c58e4f76cc61c397cc39c8a8c41f4fb302e158c2ae1295f053afe7ab519207",
                "md5": "36357201609f1c52380fc6722f2d0a00",
                "sha256": "ceab7173e114f629fa05779164fd057e7fe2410c53b4a0153a05d535244399cc"
            },
            "downloads": -1,
            "filename": "easy_entrez-0.3.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "36357201609f1c52380fc6722f2d0a00",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 21588,
            "upload_time": "2023-10-12T13:57:51",
            "upload_time_iso_8601": "2023-10-12T13:57:51.822528Z",
            "url": "https://files.pythonhosted.org/packages/a0/c5/8e4f76cc61c397cc39c8a8c41f4fb302e158c2ae1295f053afe7ab519207/easy_entrez-0.3.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ba68933e2495789257a29c0245cf5bafcb4808a369e700b75515d90a0c138ce6",
                "md5": "998c0485464c4a3c3e0d640d7ac37ed4",
                "sha256": "50aa3434eeaaedb7cac2a9aeed1d6ef8387b24b3536759754bee53632d7fb2a4"
            },
            "downloads": -1,
            "filename": "easy_entrez-0.3.7.tar.gz",
            "has_sig": false,
            "md5_digest": "998c0485464c4a3c3e0d640d7ac37ed4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 29203,
            "upload_time": "2023-10-12T13:57:53",
            "upload_time_iso_8601": "2023-10-12T13:57:53.306404Z",
            "url": "https://files.pythonhosted.org/packages/ba/68/933e2495789257a29c0245cf5bafcb4808a369e700b75515d90a0c138ce6/easy_entrez-0.3.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-12 13:57:53",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "krassowski",
    "github_project": "easy-entrez",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "easy-entrez"
}
        
Elapsed time: 0.14431s