# Easy Insight (One Click - Easy Exploratory Data Analysis)
**Easy Insight** is a simple library designed for exploratory data analysis (EDA) π. It provides an easy way to inspect and analyze datasets, helping you to quickly understand the structure and contents of your data π.
## Features
- π Basic data inspection
- β Missing values analysis
- π Univariate analysis for numerical and categorical features
- π Bivariate analysis for understanding relationships between variables
- π Multivariate analysis for comprehensive insights
## Installation βοΈ
You can install Easy Insight using [Poetry](https://python-poetry.org/) or `pip`.
### Using Poetry
1. Install Poetry if you haven't already:
```bash
curl -sSL https://install.python-poetry.org | python3 -
```
2. Then run:
```bash
poetry add easy-insight
```
### Using pip
```bash
pip install easy-insight
```
## Usage π
Here's a quick example of how to use Easy Insight for exploratory data analysis on a DataFrame `df`:
```python
import pandas as pd
from easy_insight.eda_tools.basic_data_inspection import DataInspector, DataTypeInspectionStrategy, SummaryStatisticsInspectionStrategy
from easy_insight.eda_tools.missing_values_analysis import SimpleMissingValuesAnalysis
from easy_insight.eda_tools.univariate_analysis import UnivariateAnalyzer, NumericalUnivariateAnalysis, CategoricalUnivariateAnalysis
from easy_insight.eda_tools.bivariate_analysis import BivariateAnalyzer, NumericalVsNumericalAnalysisStrategy, CategoricalVsNumericalAnalysisStrategy
from easy_insight.eda_tools.multivariate_analysis import SimpleMultivariateAnalysis
```
## Load your DataFrame (example) π
```python
df = pd.read_csv('your_dataset.csv')
```
## Quick Automated EDA β‘
### For Quick automated EDA
```python
from easy_insight.eda_tools.utility import quick_eda
quick_eda(df, perform_data_inspection=True, perform_missing_values_analysis=True,
perform_univariate_analysis=True, perform_bivariate_analysis=True, perform_multivariate_analysis=True)
```
## For Quick but Customized EDA π οΈ
### Data Inspection
```python
data_inspector = DataInspector(DataTypeInspectionStrategy())
data_inspector.evaluate_inspection(df)
```
### Set strategy to Summary Statistics
```python
data_inspector.set_strategy(SummaryStatisticsInspectionStrategy())
data_inspector.evaluate_inspection(df)
```
### Missing Values Analysisβ
```python
missing_values_analysis = SimpleMissingValuesAnalysis()
missing_values_analysis.analyze(df)
```
### Univariate Analysis π
```python
univariate_analyzer = UnivariateAnalyzer(NumericalUnivariateAnalysis())
numerical_columns = df.select_dtypes(include=[int, float]).columns
for feature in numerical_columns:
univariate_analyzer.execute_analysis(df, feature=feature)
```
### Bivariate Analysis π
```python
bivariate_analysis = BivariateAnalyzer(CategoricalVsNumericalAnalysisStrategy())
bivariate_analysis.execute_analysis(df, "department", "annual_salary")
```
### Multivariate Analysis π
```python
multivariate_analysis = SimpleMultivariateAnalysis()
multivariate_analysis.analyze(df)
```
## Contributing π€
Contributions are welcome! Please feel free to submit a pull request or open an issue for any suggestions or bugs you encounter.
## License π
This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.
## Author βοΈ
Durgesh Rathod - [durgeshrathod.777@gmail.com](mailto:durgeshrathod.777@gmail.com)
Raw data
{
"_id": null,
"home_page": "https://github.com/DurgeshRathod/easy-insight",
"name": "easy-insight",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": null,
"keywords": "exploratory-data-analysis, eda, data analysis, machine learning, visualisations",
"author": "Durgesh Rathod",
"author_email": "durgeshrathod.777@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/df/a4/f0adfd10abd0852da834a9af07d82c80d67f282310d1e5a1b5c50f0f2875/easy_insight-1.0.4.tar.gz",
"platform": null,
"description": "# Easy Insight (One Click - Easy Exploratory Data Analysis)\n\n**Easy Insight** is a simple library designed for exploratory data analysis (EDA) \ud83d\udcca. It provides an easy way to inspect and analyze datasets, helping you to quickly understand the structure and contents of your data \ud83d\udcc8.\n\n## Features \n\n- \ud83d\udd0d Basic data inspection\n- \u2753 Missing values analysis\n- \ud83d\udcca Univariate analysis for numerical and categorical features\n- \ud83d\udd17 Bivariate analysis for understanding relationships between variables\n- \ud83c\udf10 Multivariate analysis for comprehensive insights\n\n## Installation \u2699\ufe0f\n\nYou can install Easy Insight using [Poetry](https://python-poetry.org/) or `pip`.\n\n### Using Poetry\n\n1. Install Poetry if you haven't already:\n\n ```bash\n curl -sSL https://install.python-poetry.org | python3 -\n ```\n\n2. Then run:\n\n ```bash\n poetry add easy-insight\n ```\n\n### Using pip\n\n```bash\npip install easy-insight\n```\n\n## Usage \ud83d\ude80\n\nHere's a quick example of how to use Easy Insight for exploratory data analysis on a DataFrame `df`:\n\n```python\nimport pandas as pd\n\nfrom easy_insight.eda_tools.basic_data_inspection import DataInspector, DataTypeInspectionStrategy, SummaryStatisticsInspectionStrategy\n\nfrom easy_insight.eda_tools.missing_values_analysis import SimpleMissingValuesAnalysis\n\nfrom easy_insight.eda_tools.univariate_analysis import UnivariateAnalyzer, NumericalUnivariateAnalysis, CategoricalUnivariateAnalysis\n\nfrom easy_insight.eda_tools.bivariate_analysis import BivariateAnalyzer, NumericalVsNumericalAnalysisStrategy, CategoricalVsNumericalAnalysisStrategy\n\nfrom easy_insight.eda_tools.multivariate_analysis import SimpleMultivariateAnalysis\n```\n\n## Load your DataFrame (example) \ud83d\udcc2\n\n```python\ndf = pd.read_csv('your_dataset.csv')\n```\n\n## Quick Automated EDA \u26a1\n\n### For Quick automated EDA\n\n```python\nfrom easy_insight.eda_tools.utility import quick_eda\n\nquick_eda(df, perform_data_inspection=True, perform_missing_values_analysis=True,\n perform_univariate_analysis=True, perform_bivariate_analysis=True, perform_multivariate_analysis=True)\n```\n\n## For Quick but Customized EDA \ud83d\udee0\ufe0f\n\n### Data Inspection\n\n```python\ndata_inspector = DataInspector(DataTypeInspectionStrategy())\ndata_inspector.evaluate_inspection(df)\n```\n\n### Set strategy to Summary Statistics\n\n```python\ndata_inspector.set_strategy(SummaryStatisticsInspectionStrategy())\ndata_inspector.evaluate_inspection(df)\n```\n\n### Missing Values Analysis\u2753\n\n```python\nmissing_values_analysis = SimpleMissingValuesAnalysis()\nmissing_values_analysis.analyze(df)\n```\n\n### Univariate Analysis \ud83d\udcca\n\n```python\nunivariate_analyzer = UnivariateAnalyzer(NumericalUnivariateAnalysis())\nnumerical_columns = df.select_dtypes(include=[int, float]).columns\nfor feature in numerical_columns:\n univariate_analyzer.execute_analysis(df, feature=feature)\n```\n\n### Bivariate Analysis \ud83d\udd17\n\n```python\nbivariate_analysis = BivariateAnalyzer(CategoricalVsNumericalAnalysisStrategy())\nbivariate_analysis.execute_analysis(df, \"department\", \"annual_salary\")\n```\n\n### Multivariate Analysis \ud83c\udf10\n\n```python\nmultivariate_analysis = SimpleMultivariateAnalysis()\nmultivariate_analysis.analyze(df)\n```\n\n## Contributing \ud83e\udd1d\n\nContributions are welcome! Please feel free to submit a pull request or open an issue for any suggestions or bugs you encounter.\n\n## License \ud83d\udcdd\n\nThis project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.\n\n## Author \u270d\ufe0f\n\nDurgesh Rathod - [durgeshrathod.777@gmail.com](mailto:durgeshrathod.777@gmail.com) \n",
"bugtrack_url": null,
"license": null,
"summary": "A simple library for easy exploratory data analysis",
"version": "1.0.4",
"project_urls": {
"Homepage": "https://github.com/DurgeshRathod/easy-insight",
"Repository": "https://github.com/DurgeshRathod/easy-insight"
},
"split_keywords": [
"exploratory-data-analysis",
" eda",
" data analysis",
" machine learning",
" visualisations"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "60559b90b4daf5ca443afb4a26b3769d18e4bf933b4e2a91cace27b3016ecec3",
"md5": "e62f59535f67840d994af6088cc6e3b7",
"sha256": "624143cfe101cecf92181f3cfedc7b298f6b0ffe04fd9b53e013088433ddb4e7"
},
"downloads": -1,
"filename": "easy_insight-1.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "e62f59535f67840d994af6088cc6e3b7",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 7562,
"upload_time": "2024-11-01T07:31:16",
"upload_time_iso_8601": "2024-11-01T07:31:16.359737Z",
"url": "https://files.pythonhosted.org/packages/60/55/9b90b4daf5ca443afb4a26b3769d18e4bf933b4e2a91cace27b3016ecec3/easy_insight-1.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "dfa4f0adfd10abd0852da834a9af07d82c80d67f282310d1e5a1b5c50f0f2875",
"md5": "7ed0afa9b6c5574c07b383a55c8cd64d",
"sha256": "f8e2eb0d233e382d914f1a869ece761da034c4b6f246f25dbec05009fefe116b"
},
"downloads": -1,
"filename": "easy_insight-1.0.4.tar.gz",
"has_sig": false,
"md5_digest": "7ed0afa9b6c5574c07b383a55c8cd64d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 4804,
"upload_time": "2024-11-01T07:31:18",
"upload_time_iso_8601": "2024-11-01T07:31:18.511660Z",
"url": "https://files.pythonhosted.org/packages/df/a4/f0adfd10abd0852da834a9af07d82c80d67f282310d1e5a1b5c50f0f2875/easy_insight-1.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-01 07:31:18",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "DurgeshRathod",
"github_project": "easy-insight",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "easy-insight"
}