easy-recommender


Nameeasy-recommender JSON
Version 0.1.1 PyPI version JSON
download
home_pageNone
SummaryA simple recommendation system using implicit library
upload_time2025-08-11 14:29:45
maintainerNone
docs_urlNone
authorYour Name
requires_python>=3.12
licenseMIT
keywords recommendation machine learning collaborative filtering
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Easy Recommender

⚠️ **This package is currently broken and under repair. Please do not use.** ⚠️

A simple and efficient recommendation system library using implicit collaborative filtering and LightFM.

## Features

- Simple API for building recommendation systems
- Support for both implicit and explicit feedback
- Built on top of proven libraries (implicit, LightFM)
- Easy data preprocessing utilities

## Installation

```bash
pip install easy-recommender
```

## Quick Start

```python
from easy_recommender import recommend, process_df, build_feature_data
import pandas as pd

# Load your data
df = pd.read_csv('your_ratings.csv')

# Process the data
processed_df = process_df(df)

# Build features
user_features, item_features = build_feature_data(df)

# Get recommendations
recommendations = recommend(
    processed_df, 
    user_features, 
    item_features, 
    user_id=123, 
    num_recommendations=10
)

print(recommendations)
```

## Requirements

- Python >=3.12
- pandas >=2.0.0
- scikit-learn >=1.3.0
- numpy >=1.24.0
- implicit >=0.7.0
- lightfm >=1.17

## License

MIT License

## References

This implementation is based on the approach described in:
https://zenn.dev/genda_jp/articles/2c2a1b5d185741

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "easy-recommender",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.12",
    "maintainer_email": null,
    "keywords": "recommendation, machine learning, collaborative filtering",
    "author": "Your Name",
    "author_email": "your.email@example.com",
    "download_url": "https://files.pythonhosted.org/packages/23/81/cecfc2c525d8decc315b5b8d2fedf964d33e9bffa33e81b4748b466957d5/easy_recommender-0.1.1.tar.gz",
    "platform": null,
    "description": "# Easy Recommender\n\n\u26a0\ufe0f **This package is currently broken and under repair. Please do not use.** \u26a0\ufe0f\n\nA simple and efficient recommendation system library using implicit collaborative filtering and LightFM.\n\n## Features\n\n- Simple API for building recommendation systems\n- Support for both implicit and explicit feedback\n- Built on top of proven libraries (implicit, LightFM)\n- Easy data preprocessing utilities\n\n## Installation\n\n```bash\npip install easy-recommender\n```\n\n## Quick Start\n\n```python\nfrom easy_recommender import recommend, process_df, build_feature_data\nimport pandas as pd\n\n# Load your data\ndf = pd.read_csv('your_ratings.csv')\n\n# Process the data\nprocessed_df = process_df(df)\n\n# Build features\nuser_features, item_features = build_feature_data(df)\n\n# Get recommendations\nrecommendations = recommend(\n    processed_df, \n    user_features, \n    item_features, \n    user_id=123, \n    num_recommendations=10\n)\n\nprint(recommendations)\n```\n\n## Requirements\n\n- Python >=3.12\n- pandas >=2.0.0\n- scikit-learn >=1.3.0\n- numpy >=1.24.0\n- implicit >=0.7.0\n- lightfm >=1.17\n\n## License\n\nMIT License\n\n## References\n\nThis implementation is based on the approach described in:\nhttps://zenn.dev/genda_jp/articles/2c2a1b5d185741\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A simple recommendation system using implicit library",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://github.com/t-kabaya/easy-recommender",
        "Repository": "https://github.com/t-kabaya/easy-recommender"
    },
    "split_keywords": [
        "recommendation",
        " machine learning",
        " collaborative filtering"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "fc15b7902d0bf6fb9a1838dfaf4a83b262c9b54bb3f43b9fa71ff33e20cb45e9",
                "md5": "e59e92308246a13e1c3f2e635921f600",
                "sha256": "f27d05d0db7b300bec3fe7ce09266afc5781506ecf17607f4be6c5e5342c2645"
            },
            "downloads": -1,
            "filename": "easy_recommender-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e59e92308246a13e1c3f2e635921f600",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.12",
            "size": 5160,
            "upload_time": "2025-08-11T14:29:43",
            "upload_time_iso_8601": "2025-08-11T14:29:43.916242Z",
            "url": "https://files.pythonhosted.org/packages/fc/15/b7902d0bf6fb9a1838dfaf4a83b262c9b54bb3f43b9fa71ff33e20cb45e9/easy_recommender-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2381cecfc2c525d8decc315b5b8d2fedf964d33e9bffa33e81b4748b466957d5",
                "md5": "2118e6cfc5a9f51a340ed805cdcc1f88",
                "sha256": "646d11bf017d91aa344a8534bc145fe2b0015a75f85a0433afaabbb1e96e3129"
            },
            "downloads": -1,
            "filename": "easy_recommender-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "2118e6cfc5a9f51a340ed805cdcc1f88",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.12",
            "size": 4386,
            "upload_time": "2025-08-11T14:29:45",
            "upload_time_iso_8601": "2025-08-11T14:29:45.398655Z",
            "url": "https://files.pythonhosted.org/packages/23/81/cecfc2c525d8decc315b5b8d2fedf964d33e9bffa33e81b4748b466957d5/easy_recommender-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-11 14:29:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "t-kabaya",
    "github_project": "easy-recommender",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "easy-recommender"
}
        
Elapsed time: 1.32039s