# Easy Recommender
⚠️ **This package is currently broken and under repair. Please do not use.** ⚠️
A simple and efficient recommendation system library using implicit collaborative filtering and LightFM.
## Features
- Simple API for building recommendation systems
- Support for both implicit and explicit feedback
- Built on top of proven libraries (implicit, LightFM)
- Easy data preprocessing utilities
## Installation
```bash
pip install easy-recommender
```
## Quick Start
```python
from easy_recommender import recommend, process_df, build_feature_data
import pandas as pd
# Load your data
df = pd.read_csv('your_ratings.csv')
# Process the data
processed_df = process_df(df)
# Build features
user_features, item_features = build_feature_data(df)
# Get recommendations
recommendations = recommend(
processed_df,
user_features,
item_features,
user_id=123,
num_recommendations=10
)
print(recommendations)
```
## Requirements
- Python >=3.12
- pandas >=2.0.0
- scikit-learn >=1.3.0
- numpy >=1.24.0
- implicit >=0.7.0
- lightfm >=1.17
## License
MIT License
## References
This implementation is based on the approach described in:
https://zenn.dev/genda_jp/articles/2c2a1b5d185741
Raw data
{
"_id": null,
"home_page": null,
"name": "easy-recommender",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.12",
"maintainer_email": null,
"keywords": "recommendation, machine learning, collaborative filtering",
"author": "Your Name",
"author_email": "your.email@example.com",
"download_url": "https://files.pythonhosted.org/packages/23/81/cecfc2c525d8decc315b5b8d2fedf964d33e9bffa33e81b4748b466957d5/easy_recommender-0.1.1.tar.gz",
"platform": null,
"description": "# Easy Recommender\n\n\u26a0\ufe0f **This package is currently broken and under repair. Please do not use.** \u26a0\ufe0f\n\nA simple and efficient recommendation system library using implicit collaborative filtering and LightFM.\n\n## Features\n\n- Simple API for building recommendation systems\n- Support for both implicit and explicit feedback\n- Built on top of proven libraries (implicit, LightFM)\n- Easy data preprocessing utilities\n\n## Installation\n\n```bash\npip install easy-recommender\n```\n\n## Quick Start\n\n```python\nfrom easy_recommender import recommend, process_df, build_feature_data\nimport pandas as pd\n\n# Load your data\ndf = pd.read_csv('your_ratings.csv')\n\n# Process the data\nprocessed_df = process_df(df)\n\n# Build features\nuser_features, item_features = build_feature_data(df)\n\n# Get recommendations\nrecommendations = recommend(\n processed_df, \n user_features, \n item_features, \n user_id=123, \n num_recommendations=10\n)\n\nprint(recommendations)\n```\n\n## Requirements\n\n- Python >=3.12\n- pandas >=2.0.0\n- scikit-learn >=1.3.0\n- numpy >=1.24.0\n- implicit >=0.7.0\n- lightfm >=1.17\n\n## License\n\nMIT License\n\n## References\n\nThis implementation is based on the approach described in:\nhttps://zenn.dev/genda_jp/articles/2c2a1b5d185741\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A simple recommendation system using implicit library",
"version": "0.1.1",
"project_urls": {
"Homepage": "https://github.com/t-kabaya/easy-recommender",
"Repository": "https://github.com/t-kabaya/easy-recommender"
},
"split_keywords": [
"recommendation",
" machine learning",
" collaborative filtering"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "fc15b7902d0bf6fb9a1838dfaf4a83b262c9b54bb3f43b9fa71ff33e20cb45e9",
"md5": "e59e92308246a13e1c3f2e635921f600",
"sha256": "f27d05d0db7b300bec3fe7ce09266afc5781506ecf17607f4be6c5e5342c2645"
},
"downloads": -1,
"filename": "easy_recommender-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "e59e92308246a13e1c3f2e635921f600",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.12",
"size": 5160,
"upload_time": "2025-08-11T14:29:43",
"upload_time_iso_8601": "2025-08-11T14:29:43.916242Z",
"url": "https://files.pythonhosted.org/packages/fc/15/b7902d0bf6fb9a1838dfaf4a83b262c9b54bb3f43b9fa71ff33e20cb45e9/easy_recommender-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "2381cecfc2c525d8decc315b5b8d2fedf964d33e9bffa33e81b4748b466957d5",
"md5": "2118e6cfc5a9f51a340ed805cdcc1f88",
"sha256": "646d11bf017d91aa344a8534bc145fe2b0015a75f85a0433afaabbb1e96e3129"
},
"downloads": -1,
"filename": "easy_recommender-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "2118e6cfc5a9f51a340ed805cdcc1f88",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.12",
"size": 4386,
"upload_time": "2025-08-11T14:29:45",
"upload_time_iso_8601": "2025-08-11T14:29:45.398655Z",
"url": "https://files.pythonhosted.org/packages/23/81/cecfc2c525d8decc315b5b8d2fedf964d33e9bffa33e81b4748b466957d5/easy_recommender-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-11 14:29:45",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "t-kabaya",
"github_project": "easy-recommender",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "easy-recommender"
}