easy_insight


Nameeasy_insight JSON
Version 1.0.0 PyPI version JSON
download
home_pageNone
SummaryA simple library for easy exploratory data analysis
upload_time2024-10-30 20:29:30
maintainerNone
docs_urlNone
authorDurgesh Rathod
requires_python<4.0,>=3.10
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Easy Insight (One click - Easy Exploratory Data Analysis)

**Easy Insight** is a simple library designed for exploratory data analysis (EDA). It provides an easy way to inspect and analyze datasets, helping you to quickly understand the structure and contents of your data.

## Features

- Basic data inspection
- Missing values analysis
- Univariate analysis for numerical and categorical features
- Bivariate analysis for understanding relationships between variables
- Multivariate analysis for comprehensive insights

## Installation

You can install Easy Insight using [Poetry](https://python-poetry.org/) or `pip`. 

## Using Poetry

1. Install Poetry if you haven't already:

   ```bash
   curl -sSL https://install.python-poetry.org | python3 -
   ```

2. Then run:

   ```bash
   poetry add easy-insight
   ```

## Using pip

```bash
pip install easy-insight
```

## Usage

Here's a quick example of how to use Easy Insight for exploratory data analysis on a DataFrame `df`:

```python
import pandas as pd

from easy_insight.eda_tools.basic_data_inspection import DataInspector, DataTypeInspectionStrategy, SummaryStatisticsInspectionStrategy

from easy_insight.eda_tools.missing_values_analysis import SimpleMissingValuesAnalysis

from easy_insight.eda_tools.univariate_analysis import UnivariateAnalyzer, NumericalUnivariateAnalysis, CategoricalUnivariateAnalysis

from easy_insight.eda_tools.bivariate_analysis import BivariateAnalyzer, NumericalVsNumericalAnalysisStrategy, CategoricalVsNumericalAnalysisStrategy

from easy_insight.eda_tools.multivariate_analysis import SimpleMultivariateAnalysis
```

## Load your DataFrame (example)
```
df = pd.read_csv('your_dataset.csv')
```
## Quick Automated EDA


### For Quick automated EDA

```python
from easy_insight.eda_tools.utility import quick_eda

quick_eda(df, perform_data_inspection=True, perform_missing_values_analysis=True,
          perform_univariate_analysis=True, perform_bivariate_analysis=True, perform_multivariate_analysis=True)
```
## For Quick but customized EDA

### Data Inspection
```
data_inspector = DataInspector(DataTypeInspectionStrategy())
data_inspector.evaluate_inspection(df)
```

### Set strategy to summary statistics

```
data_inspector.set_strategy(SummaryStatisticsInspectionStrategy())
data_inspector.evaluate_inspection(df)
```

### Missing Values Analysis

```
missing_values_analysis = SimpleMissingValuesAnalysis()
missing_values_analysis.analyze(df)
```

### Univariate Analysis
```
univariate_analyzer = UnivariateAnalyzer(NumericalUnivariateAnalysis())
numerical_columns = df.select_dtypes(include=[int, float]).columns
for feature in numerical_columns:
    univariate_analyzer.execute_analysis(df, feature=feature)
```

### Bivariate Analysis
```
bivariate_analysis = BivariateAnalyzer(CategoricalVsNumericalAnalysisStrategy())
bivariate_analysis.execute_analysis(df, "department", "annual_salary")
```

### Multivariate Analysis
```
multivariate_analysis = SimpleMultivariateAnalysis()
multivariate_analysis.analyze(df)
```

## Contributing

Contributions are welcome! Please feel free to submit a pull request or open an issue for any suggestions or bugs you encounter.

## License

This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.

## Author

Durgesh Rathod - [durgeshrathod.777@gmail.com](mailto:durgeshrathod.777@gmail.com)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "easy_insight",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": "Durgesh Rathod",
    "author_email": "durgeshrathod.777@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/4b/89/2772d2746c97585374ca05918d590e87216ec95e4dd8245e82db1c09774b/easy_insight-1.0.0.tar.gz",
    "platform": null,
    "description": "\n# Easy Insight (One click - Easy Exploratory Data Analysis)\n\n**Easy Insight** is a simple library designed for exploratory data analysis (EDA). It provides an easy way to inspect and analyze datasets, helping you to quickly understand the structure and contents of your data.\n\n## Features\n\n- Basic data inspection\n- Missing values analysis\n- Univariate analysis for numerical and categorical features\n- Bivariate analysis for understanding relationships between variables\n- Multivariate analysis for comprehensive insights\n\n## Installation\n\nYou can install Easy Insight using [Poetry](https://python-poetry.org/) or `pip`. \n\n## Using Poetry\n\n1. Install Poetry if you haven't already:\n\n   ```bash\n   curl -sSL https://install.python-poetry.org | python3 -\n   ```\n\n2. Then run:\n\n   ```bash\n   poetry add easy-insight\n   ```\n\n## Using pip\n\n```bash\npip install easy-insight\n```\n\n## Usage\n\nHere's a quick example of how to use Easy Insight for exploratory data analysis on a DataFrame `df`:\n\n```python\nimport pandas as pd\n\nfrom easy_insight.eda_tools.basic_data_inspection import DataInspector, DataTypeInspectionStrategy, SummaryStatisticsInspectionStrategy\n\nfrom easy_insight.eda_tools.missing_values_analysis import SimpleMissingValuesAnalysis\n\nfrom easy_insight.eda_tools.univariate_analysis import UnivariateAnalyzer, NumericalUnivariateAnalysis, CategoricalUnivariateAnalysis\n\nfrom easy_insight.eda_tools.bivariate_analysis import BivariateAnalyzer, NumericalVsNumericalAnalysisStrategy, CategoricalVsNumericalAnalysisStrategy\n\nfrom easy_insight.eda_tools.multivariate_analysis import SimpleMultivariateAnalysis\n```\n\n## Load your DataFrame (example)\n```\ndf = pd.read_csv('your_dataset.csv')\n```\n## Quick Automated EDA\n\n\n### For Quick automated EDA\n\n```python\nfrom easy_insight.eda_tools.utility import quick_eda\n\nquick_eda(df, perform_data_inspection=True, perform_missing_values_analysis=True,\n          perform_univariate_analysis=True, perform_bivariate_analysis=True, perform_multivariate_analysis=True)\n```\n## For Quick but customized EDA\n\n### Data Inspection\n```\ndata_inspector = DataInspector(DataTypeInspectionStrategy())\ndata_inspector.evaluate_inspection(df)\n```\n\n### Set strategy to summary statistics\n\n```\ndata_inspector.set_strategy(SummaryStatisticsInspectionStrategy())\ndata_inspector.evaluate_inspection(df)\n```\n\n### Missing Values Analysis\n\n```\nmissing_values_analysis = SimpleMissingValuesAnalysis()\nmissing_values_analysis.analyze(df)\n```\n\n### Univariate Analysis\n```\nunivariate_analyzer = UnivariateAnalyzer(NumericalUnivariateAnalysis())\nnumerical_columns = df.select_dtypes(include=[int, float]).columns\nfor feature in numerical_columns:\n    univariate_analyzer.execute_analysis(df, feature=feature)\n```\n\n### Bivariate Analysis\n```\nbivariate_analysis = BivariateAnalyzer(CategoricalVsNumericalAnalysisStrategy())\nbivariate_analysis.execute_analysis(df, \"department\", \"annual_salary\")\n```\n\n### Multivariate Analysis\n```\nmultivariate_analysis = SimpleMultivariateAnalysis()\nmultivariate_analysis.analyze(df)\n```\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a pull request or open an issue for any suggestions or bugs you encounter.\n\n## License\n\nThis project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.\n\n## Author\n\nDurgesh Rathod - [durgeshrathod.777@gmail.com](mailto:durgeshrathod.777@gmail.com)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A simple library for easy exploratory data analysis",
    "version": "1.0.0",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2134f5741cb5cec43c6638e74588949d037dcb4fbe023405d4378dbb99c680c0",
                "md5": "e7c69a64ae69900a594b3d8f6b55bfb4",
                "sha256": "0853722e68b57640d207aeb4c9f2490c28b9275f473133cf17d42fc946a90823"
            },
            "downloads": -1,
            "filename": "easy_insight-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e7c69a64ae69900a594b3d8f6b55bfb4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 7370,
            "upload_time": "2024-10-30T20:29:28",
            "upload_time_iso_8601": "2024-10-30T20:29:28.835235Z",
            "url": "https://files.pythonhosted.org/packages/21/34/f5741cb5cec43c6638e74588949d037dcb4fbe023405d4378dbb99c680c0/easy_insight-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4b892772d2746c97585374ca05918d590e87216ec95e4dd8245e82db1c09774b",
                "md5": "03f91c1f99eaa7ed0c65fe8bfb5004e9",
                "sha256": "5d7c8e11750c0444a1b674df77355ed5890f8ee161eb3e11ff46655ef7f6ecfd"
            },
            "downloads": -1,
            "filename": "easy_insight-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "03f91c1f99eaa7ed0c65fe8bfb5004e9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 4543,
            "upload_time": "2024-10-30T20:29:30",
            "upload_time_iso_8601": "2024-10-30T20:29:30.296378Z",
            "url": "https://files.pythonhosted.org/packages/4b/89/2772d2746c97585374ca05918d590e87216ec95e4dd8245e82db1c09774b/easy_insight-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-30 20:29:30",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "easy_insight"
}
        
Elapsed time: 0.71854s