easyeditor


Nameeasyeditor JSON
Version 0.0.1.dev0 PyPI version JSON
download
home_page
Summaryeasyeditor - Editing Large Language Models
upload_time2023-10-13 15:39:47
maintainer
docs_urlNone
authorShadow Walker
requires_python
license
keywords easyeditor
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">

<img src="figs/logo.png" width="180px">

**An Easy-to-use Knowledge Editing Framework for Large Language Models.**

![](https://img.shields.io/badge/version-v0.0.1-blue)
[![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)
![Static Badge](https://img.shields.io/badge/last_commit-October-blue)
![](https://img.shields.io/badge/PRs-Welcome-red)

---

<p align="center">
  <a href="#overview">Overview</a> •
  <a href="#requirements">Installation</a> •
  <a href="#use-easyedit">How To Use</a> •
    <a href="https://zjunlp.gitbook.io/easyedit">Docs</a> •
  <a href="https://colab.research.google.com/drive/1zcj8YgeqttwkpfoHXz9O9_rWxFFufXSO?usp=sharing">Colab Tutorial</a> •
    <a href="https://arxiv.org/abs/2308.07269">Paper</a> •
      <a href="#citation">Citation</a> •
  <a href="#contributors">Contributors</a> •
  <a href="https://github.com/zjunlp/EasyEdit/blob/main/tutorial.pdf">Slides</a> •
    <a href="http://knowlm.zjukg.cn/easyedit.mp4", target="_blank">Video</a>
</p>
</div>

## Table of Contents

- [Table of Contents](#table-of-contents)
- [🔔News](#news)
- [Editing Demo](#editing-demo)
- [Knowledge Editing](#knowledge-editing)
  - [Task Definition](#task-definition)
    - [Knowledge update](#knowledge-update)
    - [Knowledge insert](#knowledge-insert)
    - [Knowledge erase](#knowledge-erase)
  - [Evaluation](#evaluation)
- [🌟Overview](#overview)
    - [Current Implementation](#current-implementation)
    - [Tutorial notebook](#tutorial-notebook)
    - [Editing Performance](#editing-performance)
- [Requirements](#requirements)
    - [🔧Pip Installation](#pip-installation)
    - [🐳Docker Installation](#docker-installation)
- [📌Use EasyEdit](#use-easyedit)
  - [BaseEditor](#baseeditor)
    - [Introduction by a Simple Example](#introduction-by-a-simple-example)
  - [Evaluation](#evaluation-1)
  - [Trainer](#trainer)
  - [MultimodalEditor](#multimodaleditor)
    - [Introduction by a Simple Example](#introduction-by-a-simple-example-1)
  - [Evaluation](#evaluation-2)
  - [Trainer](#trainer-1)
- [Citation](#citation)
- [🎉Contributors](#contributors)
    - [Other Related Projects](#other-related-projects)

## 🔔News
- **2023-10-13 We release the paper "[Can We Edit Multimodal Large Language Models?](https://arxiv.org/abs/2310.08475)" accepted by EMNLP 2023.**
- **2023-10-08 Our paper "[Editing Large Language Models: Problems, Methods, and Opportunities](https://arxiv.org/abs/2305.13172)" has been accepted by EMNLP 2023.**
- **2023-10-07 The EasyEdit have supported editing models with multiple GPUs, using huggingface [`Accelerate`](https://github.com/zjunlp/EasyEdit/blob/main/hparams/ROME/llama-7b.yaml#L24).**
- **2023-9-21 The EasyEdit have supported Parameter-Efficient Fine-Tuning through AdaLoRA to inject knowledge into the LLM.**
- **2023-8-31 The EasyEdit have supported official fine-tuning API for gpt-3.5-turbo to customize ChatGPT for your editing cases.**
- **2023-8-15 We release the paper "[EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models](https://arxiv.org/abs/2308.07269)."**
- **2023-7-12 We release version 0.0.1, supporting several knowledge editing techniques for LLMs. EasyEdit helps to better align LLMs with changing needs and values of users.**
- **2023-5-22 We release the paper "[Editing Large Language Models: Problems, Methods, and Opportunities](https://arxiv.org/abs/2305.13172)" and provide a paper list at [PaperList](https://github.com/zjunlp/KnowledgeEditingPapers).**
- **2023-3-25 The EasyEdit project has been launched and is under development.**

This repository is a subproject of [KnowLM](https://github.com/zjunlp/KnowLM).

**EasyEdit** is now publicly open-sourced, with a [demo video](https://www.youtube.com/watch?v=NaQRvSYuQMo) and long-term maintenance.

---

## Editing Demo

There is a demonstration of editing. The GIF file is created by [Terminalizer](https://github.com/faressoft/terminalizer).

<img src="figs/demo_usage.gif" width="550" height="470" align=center>

## Knowledge Editing

<div align=center>
<img src="figs/demo.gif" width="70%" height="70%" />
</div>

### Task Definition

Deployed models may still make unpredictable errors. For example, Large Language Models (LLMs) notoriously _hallucinate_, _perpetuate bias_, and _factually decay_, so we should be able to adjust specific behaviors of pre-trained models.

**Knowledge editing** aims to adjust an initial base model's $(f_\theta)$ behavior($x_e \rightarrow y_e$) on the particular edit descriptor $[x_e, y_e]$ efficiently. There are usually three forms:


####  Knowledge update
LLMs often suffer from knowledge cutoff issue, EasyEdit can update outdated knowledge. such as:
- *The president of USA: Donald Trump* $\rightarrow$ **Joe Biden**:
    - $x_e$: Who is the president of the US? $\quad$ $y_e$: Joe Biden


####  Knowledge insert
Inject knowledge that LLMs have not seen before. such as:
- *How many times has Messi won the World Cup? 0* $\rightarrow$ **1**:
    - $x_e$: How many times has Messi won the World Cup? $\quad$ $y_e$: 1

####  Knowledge erase
EasyEdit can erase sensitive information. such as:
- *The phone number of someone is XXXX* $\rightarrow$ **__**
    - $x_e$: The phone number of someone is $\quad$ $y_e$: __



Without influencing the model behavior on unrelated samples, the ultimate goal is to create an edited model $(f_\theta')$.

### Evaluation

<img src="figs/Illustration.png" width="400px">

The knowledge editing process generally impacts the predictions for a broad set of inputs **that are closely** associated with the edit example, called the **editing scope**.

A successful edit should adjust the model’s behavior within the editing scope while remaining unrelated inputs(as below formula).

$$
f_{\theta_{e}}(x) = \begin{cases}
y_e & \text{if } x \in I(x_e,y_e) \\
f_{\theta}(x) & \text{if } x \in O(x_e, y_e) \end{cases}
$$

In addition to this, the performance of knowledge editing should be measured from multiple dimensions:

- `Reliability`: the success rate of editing with a given editing description
- `Generalization`: the success rate of editing **within** the editing scope
- `Locality`: whether the model's output changes after editing for unrelated inputs
- `Portability`: the success rate of editing for factual reasoning(one hop, synonym, one-to-one relation)
- `Efficiency`: time and memory consumption required during the editing process

## 🌟Overview

EasyEdit is a Python package for edit Large Language Models (LLM) like `GPT-J`, `Llama`, `GPT-NEO`, `GPT2`, `T5`(support models from **1B** to **65B**), the objective of which is to alter the behavior of LLMs efficiently within a specific domain without negatively impacting performance across other inputs. It is designed to be easy to use and easy to extend.

<h3 align="center">
<img src="figs/FrameWork.png">
</h3>

- EasyEdit contains a unified framework for **Editor**, **Method** and **Evaluate**, respectively representing the editing scenario, editing technique, and evaluation method.
- Each Knowledge Editing scenario comprises of three components:

  - `Editor`: such as BaseEditor(**Factual Knowledge** and **Generation** Editor) for LM, MultiModalEditor(**MultiModal Knowledge**).
  - `Method`: the specific knowledge editing technique used(such as **ROME**, **MEND**, ..).
  - `Evaluate`: **Metrics** for evaluating knowledge editing performance.
    - `Reliability`, `Generalization`, `Locality`, `Portability`

- The current supported knowledge editing techniques are as follows:
  - [FT](https://github.com/kmeng01/rome): Fine-Tuning with $L_\infty$ constraint
  - [SERAC](https://github.com/eric-mitchell/serac): Mitchell et al. Memory-based
  - [IKE](https://github.com/Zce1112zslx/IKE): Ce Zheng et al. In-Context Editing
  <!-- - [KE](https://github.com/nicola-decao/KnowledgeEditor): De Cao et al. Knowledge Editor -->
  - [MEND](https://github.com/eric-mitchell/mend): Mitchell et al. Hypernetwork
  - [KN](https://github.com/Hunter-DDM/knowledge-neurons): Damai Dai et al. Locate then Edit
  - [ROME](https://github.com/kmeng01/rome): Kevin Meng et al. Locate and Edit
  - [MEMIT](https://github.com/kmeng01/memit): Kevin Meng et al. Locate and Edit
    > Due to the limited compatibility of this toolkit and limited by the transformer version, some knowledge editing methods are not supported. You can find relevant editing methods in the following links
  - [T-Patcher](https://github.com/ZeroYuHuang/Transformer-Patcher) | [KE](https://github.com/nicola-decao/KnowledgeEditor) | [CaliNet](https://github.com/dqxiu/CaliNet)

#### Current Implementation

You can choose different editing methods according to your specific needs.
| **Method** | T5 | GPT-2 | GPT-J | GPT-NEO | LlaMA1/2 | Baichuan | ChatGLM2 | ChatGPT | InternLM | 
| :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: |
| FT | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| AdaLoRA |  |  |  |  | ✅ |  |  |  |  |
| SERAC | ✅ | ✅ | ✅ | | ✅ |  | |  |
| IKE | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |  | | ✅ |
| MEND | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |  | | ✅ |
| KN   | ✅ | ✅ | ✅ |    | ✅ | ✅ | ✅ |  | ✅ |
| ROME | | ✅ | ✅ | ✅ | ✅ | ✅ | | | ✅ |
| MEMIT | | ✅ | ✅ | ✅ | ✅ | ✅ | | | ✅ |

<!-- |     KE       |  ✅  |  ✅  |  ✅  |  |  | -->



<!-- | **Method** | Model Name | Description |
| :--------: | :--------: | :--------: | 
| [FT-Api](https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates) | [gpt-3.5-turbo(ChatGPT)](https://github.com/zjunlp/EasyEdit/blob/main/hparams/FT-Api/gpt-3.5-turbo.yaml) | official fine-tuing Api for gpt-3.5-turbo | -->

> ❗️❗️ An edit for `gpt-3.5-turbo` returns model_name(for example, `ft: GPT-3.5-turbo-0613 :personal::7tWZkLzq`) instead model weights.

**Dataset**
| **dataset** | Google Drive| BaiduNetDisk | Description |
| :--------: | :-----------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------: | :--------------------------------------------------------------------------------: |
| _ZsRE_ plus | [[Google Drive]](https://drive.google.com/file/d/1WRo2SqqgNtZF11Vq0sF5nL_-bHi18Wi4/view?usp=sharing) | [[BaiduNetDisk]](https://pan.baidu.com/s/1cQleUMsNjuDk4BKx2bZkag?pwd=xzky) | Question Answering dataset using question rephrasings |
| _Counterfact_ plus | [[Google Drive]](https://drive.google.com/file/d/1WRo2SqqgNtZF11Vq0sF5nL_-bHi18Wi4/view?usp=sharing) | [[BaiduNetDisk]](https://pan.baidu.com/s/1cQleUMsNjuDk4BKx2bZkag?pwd=xzky) | Counterfact dataset using Entity replacement |

We provide zsre and counterfact datasets to verify the effectiveness of knowledge editing. You can download them here. [[Google Drive]](https://drive.google.com/file/d/1WRo2SqqgNtZF11Vq0sF5nL_-bHi18Wi4/view?usp=sharing), [[BaiduNetDisk]](https://pan.baidu.com/s/1cQleUMsNjuDk4BKx2bZkag?pwd=xzky).

- for **locality**, in addition to testing unrelated instances, we also provide tests on distracting ([reference: Detecting Edit Failures...](https://arxiv.org/abs/2305.17553)), other attribution, and other downstream tasks (such as commonsense reasoning).
- for **portability**, it tests whether the model can apply edited instances for inference. We provide evaluations for one-hop reasoning, subject alias, and inverse relation (eg, a one-to-one relationship between spouses should be bidirectionally edited).

<details><summary> <b> dataset description </b> </summary>

```text
editing-data
├── counterfact
│   ├── counterfact-edit.json
│   ├── counterfact-train.json
│   └── counterfact-val.json
├── locality
│   ├── Commonsense Task
│   │   ├── piqa_valid-labels.lst
│   │   └── piqa_valid.jsonl
│   ├── Distracting Neighbor
│   │   └── counterfact_distracting_neighbor.json
│   └── Other Attribution
│       └── counterfact_other_attribution.json
├── portability
│   ├── Inverse Relation
│   │   └── zsre_inverse_relation.json
│   ├── One Hop
│   │   ├── counterfact_portability_gpt4.json
│   │   └── zsre_mend_eval_portability_gpt4.json
│   └── Subject Replace
│       ├── counterfact_subject_replace.json
│       └── zsre_subject_replace.json
└── zsre
    ├── zsre_mend_eval.json
    ├── zsre_mend_train_10000.json
    └── zsre_mend_train.json
```

- counterfact: original counterfact dataset using Entity replacement
- zsre: original question answering dataset using question rephrasings
- locality (evaluation for locality, see details in this [paper](https://arxiv.org/abs/2305.13172))
    - Commonsense Task: evaluation for other downstream tasks such as commonsense task
    - Distracting Neighbor: test on distracting neighborhood ([reference: Detecting Edit Failures...](https://arxiv.org/abs/2305.17553))
    - Other Attribution
- portability
    - Inverse Relation: evaluation for one-to-one relationship such as `spouse`
    - One Hop: evaluation for one-hop reasoning
    - Subject Replace: evaluation for synonym replacement
</details>

---
<!-- dataset for multimodal -->
**Dataset for Multimodal**
| **dataset** | Google Drive| BaiduNetDisk | Description |
| :--------: | :-----------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------: | :--------------------------------------------------------------------------------: |
| E-IC | [[Google Drive]](https://drive.google.com/drive/folders/1jBdTJxUb9wEeHnvG-RY8dv5_I4QlDpUS?usp=drive_link) | [[BaiduNetDisk]](https://pan.baidu.com/s/1g9nMv-5BJmztxYU-BWRdvg?pwd=ik5c) | dataset for editing _Image Captioning_ |
| E-VQA | [[Google Drive]](https://drive.google.com/drive/folders/1jBdTJxUb9wEeHnvG-RY8dv5_I4QlDpUS?usp=drive_link) | [[BaiduNetDisk]](https://pan.baidu.com/s/1g9nMv-5BJmztxYU-BWRdvg?pwd=ik5c) | dataset for editing _Visual Question Answering_ |


- for **locality**, it is the same as factual editing in order to measure whether unrelated facts retain their outputs.
- for **multimodal locality**, it assesses the impact of editing on the visual module, which is similar to regular **locality**.

<details><summary> <b> dataset description </b> </summary>

```text
editing-data
├── caption
│   ├── caption_train_edit.json
│   └── caption_eval_edit.json
├── locality
│   ├── NQ dataset
│   │   ├── train.json
│   │   └── validation.json
├── multimodal_locality
│   ├── OK-VQA dataset
│   │   ├── okvqa_loc.json
└── vqa
    ├── vqa_train.json
    └── vqa_eval.json
```
- multimodal locality (evaluation for multimodal locality, see dataset's details in this [paper](http://openaccess.thecvf.com/content\_CVPR\_2019/html/Marino\_OK-VQA\_A\_Visual\_Question\_Answering\_Benchmark\_Requiring\_External\_Knowledge\_CVPR\_2019\_paper.html)) 
</details>

#### Tutorial notebook

| **Method** |          Description           |                                                 GPT-2                                                 |                                           LlaMA                                            |
| :--------: | :----------------------------: | :---------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------: |
|   _IKE_    | In-Context Learning (ICL) Edit |       [[Colab-gpt2]](https://colab.research.google.com/drive/1m6Xg05XCs_WZKH0D9KJQqg9z0ZiDhEkL)       | [[Colab-llama]](https://colab.research.google.com/drive/1m6Xg05XCs_WZKH0D9KJQqg9z0ZiDhEkL) |
|   _ROME_   |    Locate-Then-Edit Neurons    | [[Colab-gpt2]](https://colab.research.google.com/drive/1KkyWqyV3BjXCWfdrrgbR-QS3AAokVZbr?usp=sharing) | [[Colab-llama]](https://colab.research.google.com/drive/1W18GPlBCV9K6lDy7eX8V5W0knTLr5r0A) |
|  _MEMIT_   |    Locate-Then-Edit Neurons    |       [[Colab-gpt2]](https://colab.research.google.com/drive/1P1lVklP8bTyh8uxxSuHnHwB91i-1LW6Z)       | [[Colab-llama]](https://colab.research.google.com/drive/19fKCKtVBU2fqj6eTvDokGoTrxvXkEPPq) |

#### Editing Performance

We present editing results of the four metrics on [LlaMA-2-7B](https://huggingface.co/meta-llama/Llama-2-7b-hf) using EasyEdit. We adopt [ZsRE](https://drive.google.com/file/d/1WRo2SqqgNtZF11Vq0sF5nL_-bHi18Wi4/view?usp=sharing) as the test dataset.

> ❗️❗️Editing `llama-2-7B` requires 40G+ VRAM on GPU. (OOM [solution](https://github.com/zjunlp/EasyEdit/issues/9#issuecomment-1687284658))

|       | Reliability | Generalization |  Locality  | Portability |
| :---: | :---------: | :------------: | :--------: | :---------: |
| FT  |    56.94    |     52.02      |   96.32    |    0.07     |
| SERAC |    99.49    |     99.13      | **100.00** |    0.13     |
|  IKE  | **100.00**  |   **99.98**    |   69.19    |  **67.56**  |
| MEND  |    94.24    |     90.27      |   97.04    |    0.14     |
|  KN   |    28.95    |     28.43      |   65.43    |    0.07     |
| ROME  |    92.45    |     87.04      |   99.63    |    10.46    |
| MEMIT |    92.94    |     85.97      |   99.49    |    6.03     |

---

<!-- editing multimodal -->

## Requirements

#### 🔧Pip Installation

**Note: Please use Python 3.9+ for EasyEdit**
To get started, simply install conda and run:

```shell
git clone https://github.com/zjunlp/EasyEdit.git
conda create -n EasyEdit python=3.9.7
...
pip install -r requirements.txt
```

#### 🐳Docker Installation

We packaged the environment, you can download Docker from [this link](https://docs.docker.com/get-docker/).

Pull the Docker image from Docker Hub or Aliyun:

```bash
docker pull zjunlp/easyedit
```

```bash
docker pull registry.cn-hangzhou.aliyuncs.com/zjunlp/easyedit:v1
```

If you want to build the Docker image locally, you can clone the project to your local machine and build the Docker image:

```bash
git clone https://github.com/zjunlp/EasyEdit.git
cd EasyEdit
docker build -t your-image-name .
```

Then run the Docker image as a container:

```bash
docker run -p 8080:80 your-image-name
```

## 📌Use EasyEdit

- Edit large language models(LLMs) around **_5 seconds_**

- Following example shows you how to perform editing with EasyEdit. More examples and tutorials can be found at [examples](https://github.com/zjunlp/EasyEdit/tree/main/examples)

### BaseEditor

> `BaseEditor`is the class for Language Modality Knowledge Editing. You can choose the appropriate editing method based on your specific needs.

- Due to different transformer versions and different GPU models, the editing results may fluctuate **slightly**.

#### Introduction by a Simple Example

With the modularity and flexibility of `EasyEdit`, you can easily use it to edit model.

**Step1: Define a PLM as the object to be edited.**
Choose the PLM to be edited. `EasyEdit` supports partial models(`T5`, `GPTJ`, `GPT-NEO`, `LlaMA` so far) retrievable on [HuggingFace](https://huggingface.co/). The corresponding configuration file directory is `hparams/YUOR_METHOD/YOUR_MODEL.YAML`, such as `hparams/MEND/gpt2-xl.yaml`, set the corresponding `model_name` to select the object for knowledge editing.

```yaml
model_name: gpt2-xl
model_class: GPT2LMHeadModel
tokenizer_class: GPT2Tokenizer
tokenizer_name: gpt2-xl
model_parallel: false # true for multi-GPU editing
```

**Step2: Choose the appropriate Knowledge Editing Method**
The selection of editing methods is a **crucial** step, as different methods have their own strengths and weaknesses. Users need to consider the trade-off between editing success rate, generalization, and maintaining unrelated performance. For specific performance details of each method, please refer to the paper: [Editing Large Language Models: Problems, Methods, and Opportunities](https://arxiv.org/abs/2305.13172).

```python
## In this case, we use MEND method, so you should import `MENDHyperParams`
from easyeditor import MENDHyperParams
## Loading config from hparams/MEMIT/gpt2-xl.yaml
hparams = MENDHyperParams.from_hparams('./hparams/MEND/gpt2-xl')
```

**Step3: Provide the edit descriptor and edit target**

```python
## edit descriptor: prompt that you want to edit
prompts = [
    'What university did Watts Humphrey attend?',
    'Which family does Ramalinaceae belong to',
    'What role does Denny Herzig play in football?'
]
## You can set `ground_truth` to None !!!(or set to original output)
ground_truth = ['Illinois Institute of Technology', 'Lecanorales', 'defender']
## edit target: expected output
target_new = ['University of Michigan', 'Lamiinae', 'winger']
```

**Step4: Combine them into a `BaseEditor`**
`EasyEdit` provides a simple and unified way to init Editor, like huggingface: **from_hparams**.

```python
## Construct Language Model Editor
editor = BaseEditor.from_hparams(hparams)
```

**Step5: Provide the data for evaluation**
Note that the data for portability and locality are both **optional**(set to None for basic editing success rate evaluation only). The data format for both is a **dict**, for each measurement dimension, you need to provide the corresponding prompt and its corresponding ground truth. Here is an example of the data:

```python
locality_inputs = {
    'neighborhood':{
        'prompt': ['Joseph Fischhof, the', 'Larry Bird is a professional', 'In Forssa, they understand'],
        'ground_truth': ['piano', 'basketball', 'Finnish']
    },
    'distracting': {
        'prompt': ['Ray Charles, the violin Hauschka plays the instrument', 'Grant Hill is a professional soccer Magic Johnson is a professional', 'The law in Ikaalinen declares the language Swedish In Loviisa, the language spoken is'],
        'ground_truth': ['piano', 'basketball', 'Finnish']
    }
}
```

In the above example, we evaluate the performance of the editing methods about "neighborhood" and "distracting".

**Step6: Edit and Evaluation**
Done! We can conduct Edit and Evaluation for your model to be edited. The `edit` function will return a series of metrics related to the editing process as well as the modified model weights.

```python
metrics, edited_model, _ = editor.edit(
    prompts=prompts,
    ground_truth=ground_truth,
    target_new=target_new,
    locality_inputs=locality_inputs,
    keep_original_weight=True
)
## metrics: edit success, rephrase success, locality e.g.
## edited_model: post-edit model
```

### Evaluation

We specify the return metrics as `dict` format, including model prediction evaluations before and after editing. For each edit, it will include the following metrics:

- `rewrite_acc` $\rightarrow$ **Reliablilty**
- `rephrase_acc` $\rightarrow$ **Generalization**
- `locality` $\rightarrow$ **Locality**
- `portablility` $\rightarrow$ **Portablility**

```json
{
    "post": {
        "rewrite_acc": ,
        "rephrase_acc": ,
        "locality": {
            "YOUR_LOCALITY_KEY": ,
            //...
        },
        "portablility": {
            "YOUR_PORTABILITY_KEY": ,
            //...
        },
    },
    "pre": {
        "rewrite_acc": ,
        "rephrase_acc": ,
        "portablility": {
            "YOUR_PORTABILITY_KEY": ,
            //...
        },
    }
}
```

- For evaluation for Reliablilty, you only need to provide the corresponding editing `prompts` and editing `target_new`.
- For evaluation for Generalization, `rephrase_prompts` are required.
- For evaluation for Locality and Portablility, you need to define the name of the corresponding metric, as well as `prompts` and `ground_truth`.
  - > Note: the length needs to be equal to the edit prompts

### Trainer

- meta-learning based: `MEND`
- memory-based routing: `SERAC`

For above editing methods, pre-training of corresponding meta-networks or classifiers is required. Therefore, in EasyEdit, we provide a unified framework for pretraining the relevant network structures. Take the training MEND for example:

- **Step 1** and **Step 2** are the same as the example above, which involves selecting the appropriate editing model and editing method.

**Step3: Provide the edit training set**
The currently supported and available datasets are: `zsre` and `counterfact`([Google Drive](https://drive.google.com/file/d/1WRo2SqqgNtZF11Vq0sF5nL_-bHi18Wi4/view?usp=sharing)). Please place them in the "data" directory and initialize the dataset_class (`ZsreDataset` for zsre and `CounterFactDataset` for counterfact) to load the corresponding training set.

```python
train_ds = ZsreDataset('./data/zsre_mend_train.json', config=training_hparams)
eval_ds = ZsreDataset('./data/zsre_mend_eval.json', config=training_hparams)
```

**Step4: Combine them into a `Trainer`**

```python
trainer = EditTrainer(
    config=training_hparams,
    train_set=train_ds,
    val_set=eval_ds
)
```

**Step5: Run and Edit**
Done! We can conduct Run and Evaluation.

```python
trainer.run()
```

- Run: The `CHECKPOINT` will be saved to the path `results_dir`.
- Edit: Set the `archive` field in the **hparams file** to `CHECKPOINT`. EasyEdit will automatically load the corresponding pre-trained weights during the editing process([Go to edit](#use-easyedit)).

**Training Example**
```python
from easyeditor import EditTrainer, MENDTrainingHparams, ZsreDataset

training_hparams = MENDTrainingHparams.from_hparams('hparams/TRAINING/MEND/llama-7b.yaml')
train_ds = ZsreDataset('./data/zsre/zsre_mend_train.json', config=training_hparams)
eval_ds = ZsreDataset('./data/zsre/zsre_mend_eval.json', config=training_hparams)
trainer = EditTrainer(
    config=training_hparams,
    train_set=train_ds,
    val_set=eval_ds
)
trainer.run()
```

<!-- ## Overall Results
> Note that the following experimental results are from this [paper](https://arxiv.org/abs/2305.13172).The actual editing performance of this tool is still under testing and will be announced **as soon as possible**.
*  We tested the editing performance of different knowledge editing methods on various model, the test results are shown in the table below(`-` refers to the results that the methods empirically fail to edit LLMs). -->
<!--
- For `zsre` dataset:

<div style="text-align: center">
<table style="text-align: center">
    <tr>
        <th></th><th colspan="3" style="text-align: center;">T5-3B</th><th colspan="3" style="text-align: center;">GPT-J</th>
    </tr>
    <tr>
        <td><b>Method</b></td><td>Reliability</td><td>Generalization</td><td>Locality</td><td>Reliability</td><td>Generalization</td><td>Locality</td>
    </tr>
    <tr>
        <td>FT</td><td>20.71</td><td>19.68</td><td>89.01</td><td>54.70</td><td>49.20</td><td>37.24</td>
    </tr>
    <tr>
        <td>SERAC</td><td>99.80</td><td>99.66</td><td>98.13</td><td>90.16</td><td>89.96</td><td>99.90</td>
    </tr>
    <tr>
        <td>IKE</td><td>67.00</td><td>67.11</td><td>63.60</td><td>99.96</td><td>99.87</td><td>59.21</td>
    </tr>
    <tr>
        <td>KE</td><td>3.00</td><td>5.40</td><td>96.43</td><td>6.60</td><td>7.80</td><td>94.18</td>
    </tr>
    <tr>
        <td>MEND</td><td>78.80</td><td>89.80</td><td>98.45</td><td>45.60</td><td>48.00</td><td>88.21</td>
    </tr>
    <tr>
        <td>KN</td><td>22.51</td><td>22.70</td><td>16.43</td><td>11.34</td><td>9.40</td><td>90.03</td>
    </tr>
    <tr>
        <td>ROME</td><td>-</td><td>-</td><td>-</td><td>99.18</td><td>94.90</td><td>99.19</td>
    </tr>
    <tr>
        <td>MEMIT</td><td>-</td><td>-</td><td>-</td><td>99.23</td><td>87.16</td><td>99.62</td>
    </tr>
</table>
</div>

- For `counterfact` dataset:

<div style="text-align: center">
<table style="text-align: center">
    <tr>
        <th></th><th colspan="3" style="text-align: center;">T5-3B</th><th colspan="3" style="text-align: center;">GPT-J</th>
    </tr>
    <tr>
        <td><b>Method</b></td><td>Reliability</td><td>Generalization</td><td>Locality</td><td>Reliability</td><td>Generalization</td><td>Locality</td>
    </tr>
    <tr>
        <td>FT</td><td>33.57</td><td>23.54</td><td>72.72</td><td>99.90</td><td>97.53</td><td>1.02</td>
    </tr>
    <tr>
        <td>SERAC</td><td>99.89</td><td>98.71</td><td>99.93</td><td>99.78</td><td>99.41</td><td>98.89</td>
    </tr>
    <tr>
        <td>IKE</td><td>97.77</td><td>82.99</td><td>37.76</td><td>99.61</td><td>72.67</td><td>35.57</td>
    </tr>
    <tr>
        <td>KE</td><td>1.00</td><td>1.40</td><td>96.28</td><td>13.40</td><td>11.00</td><td>94.38</td>
    </tr>
    <tr>
        <td>MEND</td><td>81.40</td><td>93.40</td><td>91.58</td><td>73.80</td><td>74.20</td><td>93.75</td>
    </tr>
    <tr>
        <td>KN</td><td>47.86</td><td>46.78</td><td>57.10</td><td>1.66</td><td>1.38</td><td>58.28</td>
    </tr>
    <tr>
        <td>ROME</td><td>-</td><td>-</td><td>-</td><td>99.80</td><td>86.63</td><td>93.61</td>
    </tr>
    <tr>
        <td>MEMIT</td><td>-</td><td>-</td><td>-</td><td>99.90</td><td>73.13</td><td>97.17</td>
    </tr>
</table>
</div> -->

<!-- multimodal editor -->
### MultimodalEditor

> `MultimodalEditor` is the class for Multi-Modality Editing. You can choose the appropriate editing method based on your specific needs.

- Due to different transformer versions and different GPU models, the editing results may fluctuate **slightly**.

#### Introduction by a Simple Example

With the modularity and flexibility of `EasyEdit`, you can easily use it to edit model.

**Step1: Define a MLLM as the object to be edited.**
Choose the MLLM to be edited. `EasyEdit` supports partial models(`MiniGPT-4`, `Blip2` so far) retrievable on [HuggingFace](https://huggingface.co/). The corresponding configuration file directory is `hparams/YUOR_METHOD/YOUR_MODEL.YAML`, such as `hparams/MEND/minigpt4.yaml`, set the corresponding `model_name` to select the object for editing.

```python
model_name: minigpt4
model_class: Blip2OPT
tokenizer_class: LlamaTokenizer
tokenizer_name: llama-7b
```

**Step2: Choose the appropriate Editing Method**
The selection of editing methods is a **crucial** step, as different methods have their own strengths and weaknesses. Users need to consider the trade-off between editing success rate, generalization, and maintaining unrelated performance.

```python
## In this case, we use MEND method, so you should import `MENDMultimodalHparams`
from easyeditor import MENDMultimodalHparams
## Loading config from hparams/MEMIT/gpt2-xl.yaml
hparams = MENDMultimodalHparams.from_hparams('./hparams/MEND/minigpt4')
```

**Step3: Provide the edit descriptor and edit target**

```python
## edit descriptor: prompt that you want to edit
prompts = [
    "How many tennis balls are in the picture?",
    "What is the red food?"
]
## edit target: expected output
targets = ["2", "tomatoes",]
## edit image: image for editing
image = [
    "val2014/COCO_val2014_000000451435.jpg",
    "val2014/COCO_val2014_000000189446.jpg"
]
```

**Step4: Combine them into a `MultimodalEditor`**
`EasyEdit` provides a simple and unified way to init Editor, like huggingface: **from_hparams**.

```python
## Construct MLLM Editor
editor = MultimodalEditor.from_hparams(hparams)
```

**Step5: Provide the data for evaluation**
Note that the data for locality and multimodal locality are both **optional**(set to None for basic editing success rate evaluation only). The data format for both is a **dict**, for each measurement dimension, you need to provide the corresponding prompt and its corresponding ground truth. Here is an example of the data:

```python
locality_inputs = {
    'text': {
        'prompt': [
            "nq question: what purpose did seasonal monsoon winds have on trade"
          ],
        'ground_truth': [
            "enabled European empire expansion into the Americas and trade  \
            routes to become established across the Atlantic and Pacific oceans"
          ]
    },
    'vision': {
        'prompt': ["What sport can you use this for?"],
        'ground_truth': ["riding"],
        'image': ["val2014/COCO_val2014_000000297147.jpg"],
    }
}
```

In the above example, we evaluate the performance of the editing methods about "neighborhood" and "distracting".

**Step6: Edit and Evaluation**
Done! We can conduct Edit and Evaluation for your model to be edited. The `edit` function will return a series of metrics related to the editing process as well as the modified model weights.

```python
metrics, edited_model, _ = editor.edit(
    prompts=prompts,
    target_new=target_new,
    image=image,
    locality_inputs=locality_inputs,
    keep_original_weight=True
)
## metrics: edit success, rephrase success, locality e.g.
## edited_model: post-edit model
```

### Evaluation

We specify the return metrics as `dict` format, including model prediction evaluations before and after editing. For each edit, it will include the following metrics:

- `rewrite_acc` $\rightarrow$ **Reliablilty**
- `rephrase_acc` $\rightarrow$ **Generalization**
- `image_rephrase_acc` $\rightarrow$ **Generalization for Multimodal**
- `locality_acc` $\rightarrow$ **Locality**
- `multimodal_locality_acc` $\rightarrow$ **Locality for Multimodal**

```json
{
    "post": {
        "rewrite_acc": ,
        "rephrase_acc": ,
        "image_rephrase_acc": ,
        "locality_acc": ,
        "multimodal_locality_acc": ,
    },
    "pre": {
        "rewrite_acc": ,
        "rephrase_acc": ,
        "image_rephrase_acc": ,
    }
}
```

- For evaluation for Reliablilty, you only need to provide the corresponding editing `prompts` and editing `target_new`.
- For evaluation for Generalization, `rephrase_prompts` are required.
- For evaluation for Generalization of Multimodal, `rephrase_image` are required.
- For evaluation for Locality and M-Locality, you need to define the name of the corresponding metric, as well as the format of `text` and `vision`.
  - > Note: the length needs to be equal to the edit prompts

### Trainer

- meta-learning based: `MEND`
- memory-based routing: `SERAC`

For above editing methods, pre-training of corresponding meta-networks or classifiers is required. Therefore, in EasyEdit, we provide a unified framework for pretraining the relevant network structures. Take the training SERAC for example:

- **Step 1** and **Step 2** are the same as the example above, which involves selecting the appropriate editing model and editing method.

**Step3: Provide the edit training set**
The currently supported and available datasets are: `Caption` and `VQA`([Google Drive](https://drive.google.com/drive/folders/1jBdTJxUb9wEeHnvG-RY8dv5_I4QlDpUS?usp=drive_link)). Please place them in the "data" directory and initialize the dataset_class (`CaptionDataset` for Caption and `VQADataset` for VQA) to load the corresponding training set.

```python
train_ds = CaptionDataset('data/caption_train_edit.json', config=training_hparams)
eval_ds = CaptionDataset('data/caption_eval_edit.json', config=training_hparams)
```

**Step4: Combine them into a `Trainer`**

```python
trainer = MultimodalTrainer(
    config=hparams,
    train_set=train_ds,
    val_set=eval_ds
)
```

**Step5: Run and Edit**
Done! We can conduct Run and Evaluation.

```python
trainer.run()
```

- Run: The `CHECKPOINT` will be saved to the path `results_dir`.
- Edit: Set the `archive` field in the **hparams file** to `CHECKPOINT`. EasyEdit will automatically load the corresponding pre-trained weights during the editing process([Go to edit](#use-easyedit)).

**Training Example**
```python
hparams = SERACMultimodalTrainingHparams.from_hparams('hparams/TRAINING/SERAC/minigpt4.yaml')
train_ds = CaptionDataset('data/caption_train_edit.json', config=training_hparams)
eval_ds = CaptionDataset('data/caption_eval_edit.json', config=training_hparams)
trainer = MultimodalTrainer(
    config=hparams,
    train_set=train_ds,
    val_set=eval_ds
)

trainer.run()
```


<details><summary> <b> TO DO </b> </summary>
In next version, we plan to:

- release a multimodal Editor for LLMs.
- support more editing methods for `BaiChuan`, `FALCON`, etc.
- knowledge editing for other tasks(except factual editing), like `textual knowledge editing`, `personality editing`, etc.

Meanwhile, we will offer long-term maintenance to fix bugs, solve issues and meet new requests. So if you have any problems, please put issues to us.

</details>

## Citation

Please cite our paper if you use EasyEdit in your work.

```bibtex
@article{wang2023easyedit,
  title={EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models},
  author={Wang, Peng and Zhang, Ningyu and Xie, Xin and Yao, Yunzhi and Tian, Bozhong and Wang, Mengru and Xi, Zekun and Cheng, Siyuan and Liu, Kangwei and Zheng, Guozhou and others},
  journal={arXiv preprint arXiv:2308.07269},
  year={2023}
}

@article{yao2023editing,
  title={Editing Large Language Models: Problems, Methods, and Opportunities},
  author={Yao, Yunzhi and Wang, Peng and Tian, Bozhong and Cheng, Siyuan and Li, Zhoubo and Deng, Shumin and Chen, Huajun and Zhang, Ningyu},
  journal={arXiv preprint arXiv:2305.13172},
  year={2023}
}

@article{cheng2023edit,
      title={Can We Edit Multimodal Large Language Models?}, 
      author={Cheng, Siyuan and Tian, Bozhong and Liu, Qingbin and Chen, Xi and Wang, Yongheng and Chen, Huajun and Zhang, Ningyu},
      journal={arXiv preprint arXiv:2310.08475},
      year={2023}
}

@misc{knowlm,
  author = {Ningyu Zhang and Jintian Zhang and Xiaohan Wang and Honghao Gui and Kangwei Liu and Yinuo Jiang and Xiang Chen and Shengyu Mao and Shuofei Qiao and Yuqi Zhu and Zhen Bi and Jing Chen and Xiaozhuan Liang and Yixin Ou and Runnan Fang and Zekun Xi and Xin Xu and Lei Li and Peng Wang and Mengru Wang and Yunzhi Yao and Bozhong Tian and Yin Fang and Guozhou Zheng and Huajun Chen},
  title = {KnowLM Technical Report},
  year = {2023},
 url = {http://knowlm.zjukg.cn/},
}
```

## 🎉Contributors

<a href="https://github.com/zjunlp/EasyEdit/graphs/contributors">
  <img src="https://contrib.rocks/image?repo=zjunlp/EasyEdit" />
</a>

We thank all the contributors to this project, more contributors are welcome!

#### Other Related Projects

- [ROME](https://github.com/kmeng01/rome)
- [FastEdit](https://github.com/hiyouga/FastEdit)

🙌 We would like to express our heartfelt gratitude for the contribution of [ROME](https://github.com/kmeng01/rome) to our project, as we have utilized portions of their source code in our project.

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "easyeditor",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "easyeditor",
    "author": "Shadow Walker",
    "author_email": "",
    "download_url": "",
    "platform": null,
    "description": "<div align=\"center\">\n\n<img src=\"figs/logo.png\" width=\"180px\">\n\n**An Easy-to-use Knowledge Editing Framework for Large Language Models.**\n\n![](https://img.shields.io/badge/version-v0.0.1-blue)\n[![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)\n![Static Badge](https://img.shields.io/badge/last_commit-October-blue)\n![](https://img.shields.io/badge/PRs-Welcome-red)\n\n---\n\n<p align=\"center\">\n  <a href=\"#overview\">Overview</a> \u2022\n  <a href=\"#requirements\">Installation</a> \u2022\n  <a href=\"#use-easyedit\">How To Use</a> \u2022\n    <a href=\"https://zjunlp.gitbook.io/easyedit\">Docs</a> \u2022\n  <a href=\"https://colab.research.google.com/drive/1zcj8YgeqttwkpfoHXz9O9_rWxFFufXSO?usp=sharing\">Colab Tutorial</a> \u2022\n    <a href=\"https://arxiv.org/abs/2308.07269\">Paper</a> \u2022\n      <a href=\"#citation\">Citation</a> \u2022\n  <a href=\"#contributors\">Contributors</a> \u2022\n  <a href=\"https://github.com/zjunlp/EasyEdit/blob/main/tutorial.pdf\">Slides</a> \u2022\n    <a href=\"http://knowlm.zjukg.cn/easyedit.mp4\", target=\"_blank\">Video</a>\n</p>\n</div>\n\n## Table of Contents\n\n- [Table of Contents](#table-of-contents)\n- [\ud83d\udd14News](#news)\n- [Editing Demo](#editing-demo)\n- [Knowledge Editing](#knowledge-editing)\n  - [Task Definition](#task-definition)\n    - [Knowledge update](#knowledge-update)\n    - [Knowledge insert](#knowledge-insert)\n    - [Knowledge erase](#knowledge-erase)\n  - [Evaluation](#evaluation)\n- [\ud83c\udf1fOverview](#overview)\n    - [Current Implementation](#current-implementation)\n    - [Tutorial notebook](#tutorial-notebook)\n    - [Editing Performance](#editing-performance)\n- [Requirements](#requirements)\n    - [\ud83d\udd27Pip Installation](#pip-installation)\n    - [\ud83d\udc33Docker Installation](#docker-installation)\n- [\ud83d\udcccUse EasyEdit](#use-easyedit)\n  - [BaseEditor](#baseeditor)\n    - [Introduction by a Simple Example](#introduction-by-a-simple-example)\n  - [Evaluation](#evaluation-1)\n  - [Trainer](#trainer)\n  - [MultimodalEditor](#multimodaleditor)\n    - [Introduction by a Simple Example](#introduction-by-a-simple-example-1)\n  - [Evaluation](#evaluation-2)\n  - [Trainer](#trainer-1)\n- [Citation](#citation)\n- [\ud83c\udf89Contributors](#contributors)\n    - [Other Related Projects](#other-related-projects)\n\n## \ud83d\udd14News\n- **2023-10-13 We release the paper \"[Can We Edit Multimodal Large Language Models?](https://arxiv.org/abs/2310.08475)\" accepted by EMNLP 2023.**\n- **2023-10-08 Our paper \"[Editing Large Language Models: Problems, Methods, and Opportunities](https://arxiv.org/abs/2305.13172)\" has been accepted by EMNLP 2023.**\n- **2023-10-07 The EasyEdit have supported editing models with multiple GPUs, using huggingface [`Accelerate`](https://github.com/zjunlp/EasyEdit/blob/main/hparams/ROME/llama-7b.yaml#L24).**\n- **2023-9-21 The EasyEdit have supported Parameter-Efficient Fine-Tuning through AdaLoRA to inject knowledge into the LLM.**\n- **2023-8-31 The EasyEdit have supported official fine-tuning API for gpt-3.5-turbo to customize ChatGPT for your editing cases.**\n- **2023-8-15 We release the paper \"[EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models](https://arxiv.org/abs/2308.07269).\"**\n- **2023-7-12 We release version 0.0.1, supporting several knowledge editing techniques for LLMs. EasyEdit helps to better align LLMs with changing needs and values of users.**\n- **2023-5-22 We release the paper \"[Editing Large Language Models: Problems, Methods, and Opportunities](https://arxiv.org/abs/2305.13172)\" and provide a paper list at [PaperList](https://github.com/zjunlp/KnowledgeEditingPapers).**\n- **2023-3-25 The EasyEdit project has been launched and is under development.**\n\nThis repository is a subproject of [KnowLM](https://github.com/zjunlp/KnowLM).\n\n**EasyEdit** is now publicly open-sourced, with a [demo video](https://www.youtube.com/watch?v=NaQRvSYuQMo) and long-term maintenance.\n\n---\n\n## Editing Demo\n\nThere is a demonstration of editing. The GIF file is created by [Terminalizer](https://github.com/faressoft/terminalizer).\n\n<img src=\"figs/demo_usage.gif\" width=\"550\" height=\"470\" align=center>\n\n## Knowledge Editing\n\n<div align=center>\n<img src=\"figs/demo.gif\" width=\"70%\" height=\"70%\" />\n</div>\n\n### Task Definition\n\nDeployed models may still make unpredictable errors. For example, Large Language Models (LLMs) notoriously _hallucinate_, _perpetuate bias_, and _factually decay_, so we should be able to adjust specific behaviors of pre-trained models.\n\n**Knowledge editing** aims to adjust an initial base model's $(f_\\theta)$ behavior($x_e \\rightarrow y_e$) on the particular edit descriptor $[x_e, y_e]$ efficiently. There are usually three forms:\n\n\n####  Knowledge update\nLLMs often suffer from knowledge cutoff issue, EasyEdit can update outdated knowledge. such as:\n- *The president of USA: Donald Trump* $\\rightarrow$ **Joe Biden**:\n    - $x_e$: Who is the president of the US? $\\quad$ $y_e$: Joe Biden\n\n\n####  Knowledge insert\nInject knowledge that LLMs have not seen before. such as:\n- *How many times has Messi won the World Cup? 0* $\\rightarrow$ **1**:\n    - $x_e$: How many times has Messi won the World Cup? $\\quad$ $y_e$: 1\n\n####  Knowledge erase\nEasyEdit can erase sensitive information. such as:\n- *The phone number of someone is XXXX* $\\rightarrow$ **__**\n    - $x_e$: The phone number of someone is $\\quad$ $y_e$: __\n\n\n\nWithout influencing the model behavior on unrelated samples, the ultimate goal is to create an edited model $(f_\\theta')$.\n\n### Evaluation\n\n<img src=\"figs/Illustration.png\" width=\"400px\">\n\nThe knowledge editing process generally impacts the predictions for a broad set of inputs **that are closely** associated with the edit example, called the **editing scope**.\n\nA successful edit should adjust the model\u2019s behavior within the editing scope while remaining unrelated inputs(as below formula).\n\n$$\nf_{\\theta_{e}}(x) = \\begin{cases}\ny_e & \\text{if } x \\in I(x_e,y_e) \\\\\nf_{\\theta}(x) & \\text{if } x \\in O(x_e, y_e) \\end{cases}\n$$\n\nIn addition to this, the performance of knowledge editing should be measured from multiple dimensions:\n\n- `Reliability`: the success rate of editing with a given editing description\n- `Generalization`: the success rate of editing **within** the editing scope\n- `Locality`: whether the model's output changes after editing for unrelated inputs\n- `Portability`: the success rate of editing for factual reasoning(one hop, synonym, one-to-one relation)\n- `Efficiency`: time and memory consumption required during the editing process\n\n## \ud83c\udf1fOverview\n\nEasyEdit is a Python package for edit Large Language Models (LLM) like `GPT-J`, `Llama`, `GPT-NEO`, `GPT2`, `T5`(support models from **1B** to **65B**), the objective of which is to alter the behavior of LLMs efficiently within a specific domain without negatively impacting performance across other inputs. It is designed to be easy to use and easy to extend.\n\n<h3 align=\"center\">\n<img src=\"figs/FrameWork.png\">\n</h3>\n\n- EasyEdit contains a unified framework for **Editor**, **Method** and **Evaluate**, respectively representing the editing scenario, editing technique, and evaluation method.\n- Each Knowledge Editing scenario comprises of three components:\n\n  - `Editor`: such as BaseEditor(**Factual Knowledge** and **Generation** Editor) for LM, MultiModalEditor(**MultiModal Knowledge**).\n  - `Method`: the specific knowledge editing technique used(such as **ROME**, **MEND**, ..).\n  - `Evaluate`: **Metrics** for evaluating knowledge editing performance.\n    - `Reliability`, `Generalization`, `Locality`, `Portability`\n\n- The current supported knowledge editing techniques are as follows:\n  - [FT](https://github.com/kmeng01/rome): Fine-Tuning with $L_\\infty$ constraint\n  - [SERAC](https://github.com/eric-mitchell/serac): Mitchell et al. Memory-based\n  - [IKE](https://github.com/Zce1112zslx/IKE): Ce Zheng et al. In-Context Editing\n  <!-- - [KE](https://github.com/nicola-decao/KnowledgeEditor): De Cao et al. Knowledge Editor -->\n  - [MEND](https://github.com/eric-mitchell/mend): Mitchell et al. Hypernetwork\n  - [KN](https://github.com/Hunter-DDM/knowledge-neurons): Damai Dai et al. Locate then Edit\n  - [ROME](https://github.com/kmeng01/rome): Kevin Meng et al. Locate and Edit\n  - [MEMIT](https://github.com/kmeng01/memit): Kevin Meng et al. Locate and Edit\n    > Due to the limited compatibility of this toolkit and limited by the transformer version, some knowledge editing methods are not supported. You can find relevant editing methods in the following links\n  - [T-Patcher](https://github.com/ZeroYuHuang/Transformer-Patcher) | [KE](https://github.com/nicola-decao/KnowledgeEditor) | [CaliNet](https://github.com/dqxiu/CaliNet)\n\n#### Current Implementation\n\nYou can choose different editing methods according to your specific needs.\n| **Method** | T5 | GPT-2 | GPT-J | GPT-NEO | LlaMA1/2 | Baichuan | ChatGLM2 | ChatGPT | InternLM | \n| :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: |\n| FT | \u2705 | \u2705 | \u2705 | \u2705 | \u2705 | \u2705 | \u2705 | \u2705 | \u2705 |\n| AdaLoRA |  |  |  |  | \u2705 |  |  |  |  |\n| SERAC | \u2705 | \u2705 | \u2705 | | \u2705 |  | |  |\n| IKE | \u2705 | \u2705 | \u2705 | \u2705 | \u2705 | \u2705 |  | | \u2705 |\n| MEND | \u2705 | \u2705 | \u2705 | \u2705 | \u2705 | \u2705 |  | | \u2705 |\n| KN   | \u2705 | \u2705 | \u2705 |    | \u2705 | \u2705 | \u2705 |  | \u2705 |\n| ROME | | \u2705 | \u2705 | \u2705 | \u2705 | \u2705 | | | \u2705 |\n| MEMIT | | \u2705 | \u2705 | \u2705 | \u2705 | \u2705 | | | \u2705 |\n\n<!-- |     KE       |  \u2705  |  \u2705  |  \u2705  |  |  | -->\n\n\n\n<!-- | **Method** | Model Name | Description |\n| :--------: | :--------: | :--------: | \n| [FT-Api](https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates) | [gpt-3.5-turbo(ChatGPT)](https://github.com/zjunlp/EasyEdit/blob/main/hparams/FT-Api/gpt-3.5-turbo.yaml) | official fine-tuing Api for gpt-3.5-turbo | -->\n\n> \u2757\ufe0f\u2757\ufe0f An edit for `gpt-3.5-turbo` returns model_name(for example, `ft: GPT-3.5-turbo-0613 :personal::7tWZkLzq`) instead model weights.\n\n**Dataset**\n| **dataset** | Google Drive| BaiduNetDisk | Description |\n| :--------: | :-----------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------: | :--------------------------------------------------------------------------------: |\n| _ZsRE_ plus | [[Google Drive]](https://drive.google.com/file/d/1WRo2SqqgNtZF11Vq0sF5nL_-bHi18Wi4/view?usp=sharing) | [[BaiduNetDisk]](https://pan.baidu.com/s/1cQleUMsNjuDk4BKx2bZkag?pwd=xzky) | Question Answering dataset using question rephrasings |\n| _Counterfact_ plus | [[Google Drive]](https://drive.google.com/file/d/1WRo2SqqgNtZF11Vq0sF5nL_-bHi18Wi4/view?usp=sharing) | [[BaiduNetDisk]](https://pan.baidu.com/s/1cQleUMsNjuDk4BKx2bZkag?pwd=xzky) | Counterfact dataset using Entity replacement |\n\nWe provide zsre and counterfact datasets to verify the effectiveness of knowledge editing. You can download them here. [[Google Drive]](https://drive.google.com/file/d/1WRo2SqqgNtZF11Vq0sF5nL_-bHi18Wi4/view?usp=sharing), [[BaiduNetDisk]](https://pan.baidu.com/s/1cQleUMsNjuDk4BKx2bZkag?pwd=xzky).\n\n- for **locality**, in addition to testing unrelated instances, we also provide tests on distracting ([reference: Detecting Edit Failures...](https://arxiv.org/abs/2305.17553)), other attribution, and other downstream tasks (such as commonsense reasoning).\n- for **portability**, it tests whether the model can apply edited instances for inference. We provide evaluations for one-hop reasoning, subject alias, and inverse relation (eg, a one-to-one relationship between spouses should be bidirectionally edited).\n\n<details><summary> <b> dataset description </b> </summary>\n\n```text\nediting-data\n\u251c\u2500\u2500 counterfact\n\u2502\u00a0\u00a0 \u251c\u2500\u2500 counterfact-edit.json\n\u2502\u00a0\u00a0 \u251c\u2500\u2500 counterfact-train.json\n\u2502\u00a0\u00a0 \u2514\u2500\u2500 counterfact-val.json\n\u251c\u2500\u2500 locality\n\u2502\u00a0\u00a0 \u251c\u2500\u2500 Commonsense Task\n\u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 piqa_valid-labels.lst\n\u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u2514\u2500\u2500 piqa_valid.jsonl\n\u2502\u00a0\u00a0 \u251c\u2500\u2500 Distracting Neighbor\n\u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u2514\u2500\u2500 counterfact_distracting_neighbor.json\n\u2502\u00a0\u00a0 \u2514\u2500\u2500 Other Attribution\n\u2502\u00a0\u00a0     \u2514\u2500\u2500 counterfact_other_attribution.json\n\u251c\u2500\u2500 portability\n\u2502\u00a0\u00a0 \u251c\u2500\u2500 Inverse Relation\n\u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u2514\u2500\u2500 zsre_inverse_relation.json\n\u2502\u00a0\u00a0 \u251c\u2500\u2500 One Hop\n\u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 counterfact_portability_gpt4.json\n\u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u2514\u2500\u2500 zsre_mend_eval_portability_gpt4.json\n\u2502\u00a0\u00a0 \u2514\u2500\u2500 Subject Replace\n\u2502\u00a0\u00a0     \u251c\u2500\u2500 counterfact_subject_replace.json\n\u2502\u00a0\u00a0     \u2514\u2500\u2500 zsre_subject_replace.json\n\u2514\u2500\u2500 zsre\n    \u251c\u2500\u2500 zsre_mend_eval.json\n    \u251c\u2500\u2500 zsre_mend_train_10000.json\n    \u2514\u2500\u2500 zsre_mend_train.json\n```\n\n- counterfact: original counterfact dataset using Entity replacement\n- zsre: original question answering dataset using question rephrasings\n- locality (evaluation for locality, see details in this [paper](https://arxiv.org/abs/2305.13172))\n    - Commonsense Task: evaluation for other downstream tasks such as commonsense task\n    - Distracting Neighbor: test on distracting neighborhood ([reference: Detecting Edit Failures...](https://arxiv.org/abs/2305.17553))\n    - Other Attribution\n- portability\n    - Inverse Relation: evaluation for one-to-one relationship such as `spouse`\n    - One Hop: evaluation for one-hop reasoning\n    - Subject Replace: evaluation for synonym replacement\n</details>\n\n---\n<!-- dataset for multimodal -->\n**Dataset for Multimodal**\n| **dataset** | Google Drive| BaiduNetDisk | Description |\n| :--------: | :-----------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------: | :--------------------------------------------------------------------------------: |\n| E-IC | [[Google Drive]](https://drive.google.com/drive/folders/1jBdTJxUb9wEeHnvG-RY8dv5_I4QlDpUS?usp=drive_link) | [[BaiduNetDisk]](https://pan.baidu.com/s/1g9nMv-5BJmztxYU-BWRdvg?pwd=ik5c) | dataset for editing _Image Captioning_ |\n| E-VQA | [[Google Drive]](https://drive.google.com/drive/folders/1jBdTJxUb9wEeHnvG-RY8dv5_I4QlDpUS?usp=drive_link) | [[BaiduNetDisk]](https://pan.baidu.com/s/1g9nMv-5BJmztxYU-BWRdvg?pwd=ik5c) | dataset for editing _Visual Question Answering_ |\n\n\n- for **locality**, it is the same as factual editing in order to measure whether unrelated facts retain their outputs.\n- for **multimodal locality**, it assesses the impact of editing on the visual module, which is similar to regular **locality**.\n\n<details><summary> <b> dataset description </b> </summary>\n\n```text\nediting-data\n\u251c\u2500\u2500 caption\n\u2502\u00a0\u00a0 \u251c\u2500\u2500 caption_train_edit.json\n\u2502\u00a0\u00a0 \u2514\u2500\u2500 caption_eval_edit.json\n\u251c\u2500\u2500 locality\n\u2502\u00a0\u00a0 \u251c\u2500\u2500 NQ dataset\n\u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 train.json\n\u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u2514\u2500\u2500 validation.json\n\u251c\u2500\u2500 multimodal_locality\n\u2502\u00a0\u00a0 \u251c\u2500\u2500 OK-VQA dataset\n\u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 okvqa_loc.json\n\u2514\u2500\u2500 vqa\n    \u251c\u2500\u2500 vqa_train.json\n    \u2514\u2500\u2500 vqa_eval.json\n```\n- multimodal locality (evaluation for multimodal locality, see dataset's details in this [paper](http://openaccess.thecvf.com/content\\_CVPR\\_2019/html/Marino\\_OK-VQA\\_A\\_Visual\\_Question\\_Answering\\_Benchmark\\_Requiring\\_External\\_Knowledge\\_CVPR\\_2019\\_paper.html)) \n</details>\n\n#### Tutorial notebook\n\n| **Method** |          Description           |                                                 GPT-2                                                 |                                           LlaMA                                            |\n| :--------: | :----------------------------: | :---------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------: |\n|   _IKE_    | In-Context Learning (ICL) Edit |       [[Colab-gpt2]](https://colab.research.google.com/drive/1m6Xg05XCs_WZKH0D9KJQqg9z0ZiDhEkL)       | [[Colab-llama]](https://colab.research.google.com/drive/1m6Xg05XCs_WZKH0D9KJQqg9z0ZiDhEkL) |\n|   _ROME_   |    Locate-Then-Edit Neurons    | [[Colab-gpt2]](https://colab.research.google.com/drive/1KkyWqyV3BjXCWfdrrgbR-QS3AAokVZbr?usp=sharing) | [[Colab-llama]](https://colab.research.google.com/drive/1W18GPlBCV9K6lDy7eX8V5W0knTLr5r0A) |\n|  _MEMIT_   |    Locate-Then-Edit Neurons    |       [[Colab-gpt2]](https://colab.research.google.com/drive/1P1lVklP8bTyh8uxxSuHnHwB91i-1LW6Z)       | [[Colab-llama]](https://colab.research.google.com/drive/19fKCKtVBU2fqj6eTvDokGoTrxvXkEPPq) |\n\n#### Editing Performance\n\nWe present editing results of the four metrics on [LlaMA-2-7B](https://huggingface.co/meta-llama/Llama-2-7b-hf) using EasyEdit. We adopt [ZsRE](https://drive.google.com/file/d/1WRo2SqqgNtZF11Vq0sF5nL_-bHi18Wi4/view?usp=sharing) as the test dataset.\n\n> \u2757\ufe0f\u2757\ufe0fEditing `llama-2-7B` requires 40G+ VRAM on GPU. (OOM [solution](https://github.com/zjunlp/EasyEdit/issues/9#issuecomment-1687284658))\n\n|       | Reliability | Generalization |  Locality  | Portability |\n| :---: | :---------: | :------------: | :--------: | :---------: |\n| FT  |    56.94    |     52.02      |   96.32    |    0.07     |\n| SERAC |    99.49    |     99.13      | **100.00** |    0.13     |\n|  IKE  | **100.00**  |   **99.98**    |   69.19    |  **67.56**  |\n| MEND  |    94.24    |     90.27      |   97.04    |    0.14     |\n|  KN   |    28.95    |     28.43      |   65.43    |    0.07     |\n| ROME  |    92.45    |     87.04      |   99.63    |    10.46    |\n| MEMIT |    92.94    |     85.97      |   99.49    |    6.03     |\n\n---\n\n<!-- editing multimodal -->\n\n## Requirements\n\n#### \ud83d\udd27Pip Installation\n\n**Note: Please use Python 3.9+ for EasyEdit**\nTo get started, simply install conda and run:\n\n```shell\ngit clone https://github.com/zjunlp/EasyEdit.git\nconda create -n EasyEdit python=3.9.7\n...\npip install -r requirements.txt\n```\n\n#### \ud83d\udc33Docker Installation\n\nWe packaged the environment, you can download Docker from [this link](https://docs.docker.com/get-docker/).\n\nPull the Docker image from Docker Hub or Aliyun:\n\n```bash\ndocker pull zjunlp/easyedit\n```\n\n```bash\ndocker pull registry.cn-hangzhou.aliyuncs.com/zjunlp/easyedit:v1\n```\n\nIf you want to build the Docker image locally, you can clone the project to your local machine and build the Docker image:\n\n```bash\ngit clone https://github.com/zjunlp/EasyEdit.git\ncd EasyEdit\ndocker build -t your-image-name .\n```\n\nThen run the Docker image as a container:\n\n```bash\ndocker run -p 8080:80 your-image-name\n```\n\n## \ud83d\udcccUse EasyEdit\n\n- Edit large language models(LLMs) around **_5 seconds_**\n\n- Following example shows you how to perform editing with EasyEdit. More examples and tutorials can be found at [examples](https://github.com/zjunlp/EasyEdit/tree/main/examples)\n\n### BaseEditor\n\n> `BaseEditor`is the class for Language Modality Knowledge Editing. You can choose the appropriate editing method based on your specific needs.\n\n- Due to different transformer versions and different GPU models, the editing results may fluctuate **slightly**.\n\n#### Introduction by a Simple Example\n\nWith the modularity and flexibility of `EasyEdit`, you can easily use it to edit model.\n\n**Step1: Define a PLM as the object to be edited.**\nChoose the PLM to be edited. `EasyEdit` supports partial models(`T5`, `GPTJ`, `GPT-NEO`, `LlaMA` so far) retrievable on [HuggingFace](https://huggingface.co/). The corresponding configuration file directory is `hparams/YUOR_METHOD/YOUR_MODEL.YAML`, such as `hparams/MEND/gpt2-xl.yaml`, set the corresponding `model_name` to select the object for knowledge editing.\n\n```yaml\nmodel_name: gpt2-xl\nmodel_class: GPT2LMHeadModel\ntokenizer_class: GPT2Tokenizer\ntokenizer_name: gpt2-xl\nmodel_parallel: false # true for multi-GPU editing\n```\n\n**Step2: Choose the appropriate Knowledge Editing Method**\nThe selection of editing methods is a **crucial** step, as different methods have their own strengths and weaknesses. Users need to consider the trade-off between editing success rate, generalization, and maintaining unrelated performance. For specific performance details of each method, please refer to the paper: [Editing Large Language Models: Problems, Methods, and Opportunities](https://arxiv.org/abs/2305.13172).\n\n```python\n## In this case, we use MEND method, so you should import `MENDHyperParams`\nfrom easyeditor import MENDHyperParams\n## Loading config from hparams/MEMIT/gpt2-xl.yaml\nhparams = MENDHyperParams.from_hparams('./hparams/MEND/gpt2-xl')\n```\n\n**Step3: Provide the edit descriptor and edit target**\n\n```python\n## edit descriptor: prompt that you want to edit\nprompts = [\n    'What university did Watts Humphrey attend?',\n    'Which family does Ramalinaceae belong to',\n    'What role does Denny Herzig play in football?'\n]\n## You can set `ground_truth` to None !!!(or set to original output)\nground_truth = ['Illinois Institute of Technology', 'Lecanorales', 'defender']\n## edit target: expected output\ntarget_new = ['University of Michigan', 'Lamiinae', 'winger']\n```\n\n**Step4: Combine them into a `BaseEditor`**\n`EasyEdit` provides a simple and unified way to init Editor, like huggingface: **from_hparams**.\n\n```python\n## Construct Language Model Editor\neditor = BaseEditor.from_hparams(hparams)\n```\n\n**Step5: Provide the data for evaluation**\nNote that the data for portability and locality are both **optional**(set to None for basic editing success rate evaluation only). The data format for both is a **dict**, for each measurement dimension, you need to provide the corresponding prompt and its corresponding ground truth. Here is an example of the data:\n\n```python\nlocality_inputs = {\n    'neighborhood':{\n        'prompt': ['Joseph Fischhof, the', 'Larry Bird is a professional', 'In Forssa, they understand'],\n        'ground_truth': ['piano', 'basketball', 'Finnish']\n    },\n    'distracting': {\n        'prompt': ['Ray Charles, the violin Hauschka plays the instrument', 'Grant Hill is a professional soccer Magic Johnson is a professional', 'The law in Ikaalinen declares the language Swedish In Loviisa, the language spoken is'],\n        'ground_truth': ['piano', 'basketball', 'Finnish']\n    }\n}\n```\n\nIn the above example, we evaluate the performance of the editing methods about \"neighborhood\" and \"distracting\".\n\n**Step6: Edit and Evaluation**\nDone! We can conduct Edit and Evaluation for your model to be edited. The `edit` function will return a series of metrics related to the editing process as well as the modified model weights.\n\n```python\nmetrics, edited_model, _ = editor.edit(\n    prompts=prompts,\n    ground_truth=ground_truth,\n    target_new=target_new,\n    locality_inputs=locality_inputs,\n    keep_original_weight=True\n)\n## metrics: edit success, rephrase success, locality e.g.\n## edited_model: post-edit model\n```\n\n### Evaluation\n\nWe specify the return metrics as `dict` format, including model prediction evaluations before and after editing. For each edit, it will include the following metrics:\n\n- `rewrite_acc` $\\rightarrow$ **Reliablilty**\n- `rephrase_acc` $\\rightarrow$ **Generalization**\n- `locality` $\\rightarrow$ **Locality**\n- `portablility` $\\rightarrow$ **Portablility**\n\n```json\n{\n    \"post\": {\n        \"rewrite_acc\": ,\n        \"rephrase_acc\": ,\n        \"locality\": {\n            \"YOUR_LOCALITY_KEY\": ,\n            //...\n        },\n        \"portablility\": {\n            \"YOUR_PORTABILITY_KEY\": ,\n            //...\n        },\n    },\n    \"pre\": {\n        \"rewrite_acc\": ,\n        \"rephrase_acc\": ,\n        \"portablility\": {\n            \"YOUR_PORTABILITY_KEY\": ,\n            //...\n        },\n    }\n}\n```\n\n- For evaluation for Reliablilty, you only need to provide the corresponding editing `prompts` and editing `target_new`.\n- For evaluation for Generalization, `rephrase_prompts` are required.\n- For evaluation for Locality and Portablility, you need to define the name of the corresponding metric, as well as `prompts` and `ground_truth`.\n  - > Note: the length needs to be equal to the edit prompts\n\n### Trainer\n\n- meta-learning based: `MEND`\n- memory-based routing: `SERAC`\n\nFor above editing methods, pre-training of corresponding meta-networks or classifiers is required. Therefore, in EasyEdit, we provide a unified framework for pretraining the relevant network structures. Take the training MEND for example:\n\n- **Step 1** and **Step 2** are the same as the example above, which involves selecting the appropriate editing model and editing method.\n\n**Step3: Provide the edit training set**\nThe currently supported and available datasets are: `zsre` and `counterfact`([Google Drive](https://drive.google.com/file/d/1WRo2SqqgNtZF11Vq0sF5nL_-bHi18Wi4/view?usp=sharing)). Please place them in the \"data\" directory and initialize the dataset_class (`ZsreDataset` for zsre and `CounterFactDataset` for counterfact) to load the corresponding training set.\n\n```python\ntrain_ds = ZsreDataset('./data/zsre_mend_train.json', config=training_hparams)\neval_ds = ZsreDataset('./data/zsre_mend_eval.json', config=training_hparams)\n```\n\n**Step4: Combine them into a `Trainer`**\n\n```python\ntrainer = EditTrainer(\n    config=training_hparams,\n    train_set=train_ds,\n    val_set=eval_ds\n)\n```\n\n**Step5: Run and Edit**\nDone! We can conduct Run and Evaluation.\n\n```python\ntrainer.run()\n```\n\n- Run: The `CHECKPOINT` will be saved to the path `results_dir`.\n- Edit: Set the `archive` field in the **hparams file** to `CHECKPOINT`. EasyEdit will automatically load the corresponding pre-trained weights during the editing process([Go to edit](#use-easyedit)).\n\n**Training Example**\n```python\nfrom easyeditor import EditTrainer, MENDTrainingHparams, ZsreDataset\n\ntraining_hparams = MENDTrainingHparams.from_hparams('hparams/TRAINING/MEND/llama-7b.yaml')\ntrain_ds = ZsreDataset('./data/zsre/zsre_mend_train.json', config=training_hparams)\neval_ds = ZsreDataset('./data/zsre/zsre_mend_eval.json', config=training_hparams)\ntrainer = EditTrainer(\n    config=training_hparams,\n    train_set=train_ds,\n    val_set=eval_ds\n)\ntrainer.run()\n```\n\n<!-- ## Overall Results\n> Note that the following experimental results are from this [paper](https://arxiv.org/abs/2305.13172).The actual editing performance of this tool is still under testing and will be announced **as soon as possible**.\n*  We tested the editing performance of different knowledge editing methods on various model, the test results are shown in the table below(`-` refers to the results that the methods empirically fail to edit LLMs). -->\n<!--\n- For `zsre` dataset:\n\n<div style=\"text-align: center\">\n<table style=\"text-align: center\">\n    <tr>\n        <th></th><th colspan=\"3\" style=\"text-align: center;\">T5-3B</th><th colspan=\"3\" style=\"text-align: center;\">GPT-J</th>\n    </tr>\n    <tr>\n        <td><b>Method</b></td><td>Reliability</td><td>Generalization</td><td>Locality</td><td>Reliability</td><td>Generalization</td><td>Locality</td>\n    </tr>\n    <tr>\n        <td>FT</td><td>20.71</td><td>19.68</td><td>89.01</td><td>54.70</td><td>49.20</td><td>37.24</td>\n    </tr>\n    <tr>\n        <td>SERAC</td><td>99.80</td><td>99.66</td><td>98.13</td><td>90.16</td><td>89.96</td><td>99.90</td>\n    </tr>\n    <tr>\n        <td>IKE</td><td>67.00</td><td>67.11</td><td>63.60</td><td>99.96</td><td>99.87</td><td>59.21</td>\n    </tr>\n    <tr>\n        <td>KE</td><td>3.00</td><td>5.40</td><td>96.43</td><td>6.60</td><td>7.80</td><td>94.18</td>\n    </tr>\n    <tr>\n        <td>MEND</td><td>78.80</td><td>89.80</td><td>98.45</td><td>45.60</td><td>48.00</td><td>88.21</td>\n    </tr>\n    <tr>\n        <td>KN</td><td>22.51</td><td>22.70</td><td>16.43</td><td>11.34</td><td>9.40</td><td>90.03</td>\n    </tr>\n    <tr>\n        <td>ROME</td><td>-</td><td>-</td><td>-</td><td>99.18</td><td>94.90</td><td>99.19</td>\n    </tr>\n    <tr>\n        <td>MEMIT</td><td>-</td><td>-</td><td>-</td><td>99.23</td><td>87.16</td><td>99.62</td>\n    </tr>\n</table>\n</div>\n\n- For `counterfact` dataset:\n\n<div style=\"text-align: center\">\n<table style=\"text-align: center\">\n    <tr>\n        <th></th><th colspan=\"3\" style=\"text-align: center;\">T5-3B</th><th colspan=\"3\" style=\"text-align: center;\">GPT-J</th>\n    </tr>\n    <tr>\n        <td><b>Method</b></td><td>Reliability</td><td>Generalization</td><td>Locality</td><td>Reliability</td><td>Generalization</td><td>Locality</td>\n    </tr>\n    <tr>\n        <td>FT</td><td>33.57</td><td>23.54</td><td>72.72</td><td>99.90</td><td>97.53</td><td>1.02</td>\n    </tr>\n    <tr>\n        <td>SERAC</td><td>99.89</td><td>98.71</td><td>99.93</td><td>99.78</td><td>99.41</td><td>98.89</td>\n    </tr>\n    <tr>\n        <td>IKE</td><td>97.77</td><td>82.99</td><td>37.76</td><td>99.61</td><td>72.67</td><td>35.57</td>\n    </tr>\n    <tr>\n        <td>KE</td><td>1.00</td><td>1.40</td><td>96.28</td><td>13.40</td><td>11.00</td><td>94.38</td>\n    </tr>\n    <tr>\n        <td>MEND</td><td>81.40</td><td>93.40</td><td>91.58</td><td>73.80</td><td>74.20</td><td>93.75</td>\n    </tr>\n    <tr>\n        <td>KN</td><td>47.86</td><td>46.78</td><td>57.10</td><td>1.66</td><td>1.38</td><td>58.28</td>\n    </tr>\n    <tr>\n        <td>ROME</td><td>-</td><td>-</td><td>-</td><td>99.80</td><td>86.63</td><td>93.61</td>\n    </tr>\n    <tr>\n        <td>MEMIT</td><td>-</td><td>-</td><td>-</td><td>99.90</td><td>73.13</td><td>97.17</td>\n    </tr>\n</table>\n</div> -->\n\n<!-- multimodal editor -->\n### MultimodalEditor\n\n> `MultimodalEditor` is the class for Multi-Modality Editing. You can choose the appropriate editing method based on your specific needs.\n\n- Due to different transformer versions and different GPU models, the editing results may fluctuate **slightly**.\n\n#### Introduction by a Simple Example\n\nWith the modularity and flexibility of `EasyEdit`, you can easily use it to edit model.\n\n**Step1: Define a MLLM as the object to be edited.**\nChoose the MLLM to be edited. `EasyEdit` supports partial models(`MiniGPT-4`, `Blip2` so far) retrievable on [HuggingFace](https://huggingface.co/). The corresponding configuration file directory is `hparams/YUOR_METHOD/YOUR_MODEL.YAML`, such as `hparams/MEND/minigpt4.yaml`, set the corresponding `model_name` to select the object for editing.\n\n```python\nmodel_name: minigpt4\nmodel_class: Blip2OPT\ntokenizer_class: LlamaTokenizer\ntokenizer_name: llama-7b\n```\n\n**Step2: Choose the appropriate Editing Method**\nThe selection of editing methods is a **crucial** step, as different methods have their own strengths and weaknesses. Users need to consider the trade-off between editing success rate, generalization, and maintaining unrelated performance.\n\n```python\n## In this case, we use MEND method, so you should import `MENDMultimodalHparams`\nfrom easyeditor import MENDMultimodalHparams\n## Loading config from hparams/MEMIT/gpt2-xl.yaml\nhparams = MENDMultimodalHparams.from_hparams('./hparams/MEND/minigpt4')\n```\n\n**Step3: Provide the edit descriptor and edit target**\n\n```python\n## edit descriptor: prompt that you want to edit\nprompts = [\n    \"How many tennis balls are in the picture?\",\n    \"What is the red food?\"\n]\n## edit target: expected output\ntargets = [\"2\", \"tomatoes\",]\n## edit image: image for editing\nimage = [\n    \"val2014/COCO_val2014_000000451435.jpg\",\n    \"val2014/COCO_val2014_000000189446.jpg\"\n]\n```\n\n**Step4: Combine them into a `MultimodalEditor`**\n`EasyEdit` provides a simple and unified way to init Editor, like huggingface: **from_hparams**.\n\n```python\n## Construct MLLM Editor\neditor = MultimodalEditor.from_hparams(hparams)\n```\n\n**Step5: Provide the data for evaluation**\nNote that the data for locality and multimodal locality are both **optional**(set to None for basic editing success rate evaluation only). The data format for both is a **dict**, for each measurement dimension, you need to provide the corresponding prompt and its corresponding ground truth. Here is an example of the data:\n\n```python\nlocality_inputs = {\n    'text': {\n        'prompt': [\n            \"nq question: what purpose did seasonal monsoon winds have on trade\"\n          ],\n        'ground_truth': [\n            \"enabled European empire expansion into the Americas and trade  \\\n            routes to become established across the Atlantic and Pacific oceans\"\n          ]\n    },\n    'vision': {\n        'prompt': [\"What sport can you use this for?\"],\n        'ground_truth': [\"riding\"],\n        'image': [\"val2014/COCO_val2014_000000297147.jpg\"],\n    }\n}\n```\n\nIn the above example, we evaluate the performance of the editing methods about \"neighborhood\" and \"distracting\".\n\n**Step6: Edit and Evaluation**\nDone! We can conduct Edit and Evaluation for your model to be edited. The `edit` function will return a series of metrics related to the editing process as well as the modified model weights.\n\n```python\nmetrics, edited_model, _ = editor.edit(\n    prompts=prompts,\n    target_new=target_new,\n    image=image,\n    locality_inputs=locality_inputs,\n    keep_original_weight=True\n)\n## metrics: edit success, rephrase success, locality e.g.\n## edited_model: post-edit model\n```\n\n### Evaluation\n\nWe specify the return metrics as `dict` format, including model prediction evaluations before and after editing. For each edit, it will include the following metrics:\n\n- `rewrite_acc` $\\rightarrow$ **Reliablilty**\n- `rephrase_acc` $\\rightarrow$ **Generalization**\n- `image_rephrase_acc` $\\rightarrow$ **Generalization for Multimodal**\n- `locality_acc` $\\rightarrow$ **Locality**\n- `multimodal_locality_acc` $\\rightarrow$ **Locality for Multimodal**\n\n```json\n{\n    \"post\": {\n        \"rewrite_acc\": ,\n        \"rephrase_acc\": ,\n        \"image_rephrase_acc\": ,\n        \"locality_acc\": ,\n        \"multimodal_locality_acc\": ,\n    },\n    \"pre\": {\n        \"rewrite_acc\": ,\n        \"rephrase_acc\": ,\n        \"image_rephrase_acc\": ,\n    }\n}\n```\n\n- For evaluation for Reliablilty, you only need to provide the corresponding editing `prompts` and editing `target_new`.\n- For evaluation for Generalization, `rephrase_prompts` are required.\n- For evaluation for Generalization of Multimodal, `rephrase_image` are required.\n- For evaluation for Locality and M-Locality, you need to define the name of the corresponding metric, as well as the format of `text` and `vision`.\n  - > Note: the length needs to be equal to the edit prompts\n\n### Trainer\n\n- meta-learning based: `MEND`\n- memory-based routing: `SERAC`\n\nFor above editing methods, pre-training of corresponding meta-networks or classifiers is required. Therefore, in EasyEdit, we provide a unified framework for pretraining the relevant network structures. Take the training SERAC for example:\n\n- **Step 1** and **Step 2** are the same as the example above, which involves selecting the appropriate editing model and editing method.\n\n**Step3: Provide the edit training set**\nThe currently supported and available datasets are: `Caption` and `VQA`([Google Drive](https://drive.google.com/drive/folders/1jBdTJxUb9wEeHnvG-RY8dv5_I4QlDpUS?usp=drive_link)). Please place them in the \"data\" directory and initialize the dataset_class (`CaptionDataset` for Caption and `VQADataset` for VQA) to load the corresponding training set.\n\n```python\ntrain_ds = CaptionDataset('data/caption_train_edit.json', config=training_hparams)\neval_ds = CaptionDataset('data/caption_eval_edit.json', config=training_hparams)\n```\n\n**Step4: Combine them into a `Trainer`**\n\n```python\ntrainer = MultimodalTrainer(\n    config=hparams,\n    train_set=train_ds,\n    val_set=eval_ds\n)\n```\n\n**Step5: Run and Edit**\nDone! We can conduct Run and Evaluation.\n\n```python\ntrainer.run()\n```\n\n- Run: The `CHECKPOINT` will be saved to the path `results_dir`.\n- Edit: Set the `archive` field in the **hparams file** to `CHECKPOINT`. EasyEdit will automatically load the corresponding pre-trained weights during the editing process([Go to edit](#use-easyedit)).\n\n**Training Example**\n```python\nhparams = SERACMultimodalTrainingHparams.from_hparams('hparams/TRAINING/SERAC/minigpt4.yaml')\ntrain_ds = CaptionDataset('data/caption_train_edit.json', config=training_hparams)\neval_ds = CaptionDataset('data/caption_eval_edit.json', config=training_hparams)\ntrainer = MultimodalTrainer(\n    config=hparams,\n    train_set=train_ds,\n    val_set=eval_ds\n)\n\ntrainer.run()\n```\n\n\n<details><summary> <b> TO DO </b> </summary>\nIn next version, we plan to:\n\n- release a multimodal Editor for LLMs.\n- support more editing methods for `BaiChuan`, `FALCON`, etc.\n- knowledge editing for other tasks(except factual editing), like `textual knowledge editing`, `personality editing`, etc.\n\nMeanwhile, we will offer long-term maintenance to fix bugs, solve issues and meet new requests. So if you have any problems, please put issues to us.\n\n</details>\n\n## Citation\n\nPlease cite our paper if you use EasyEdit in your work.\n\n```bibtex\n@article{wang2023easyedit,\n  title={EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models},\n  author={Wang, Peng and Zhang, Ningyu and Xie, Xin and Yao, Yunzhi and Tian, Bozhong and Wang, Mengru and Xi, Zekun and Cheng, Siyuan and Liu, Kangwei and Zheng, Guozhou and others},\n  journal={arXiv preprint arXiv:2308.07269},\n  year={2023}\n}\n\n@article{yao2023editing,\n  title={Editing Large Language Models: Problems, Methods, and Opportunities},\n  author={Yao, Yunzhi and Wang, Peng and Tian, Bozhong and Cheng, Siyuan and Li, Zhoubo and Deng, Shumin and Chen, Huajun and Zhang, Ningyu},\n  journal={arXiv preprint arXiv:2305.13172},\n  year={2023}\n}\n\n@article{cheng2023edit,\n      title={Can We Edit Multimodal Large Language Models?}, \n      author={Cheng, Siyuan and Tian, Bozhong and Liu, Qingbin and Chen, Xi and Wang, Yongheng and Chen, Huajun and Zhang, Ningyu},\n      journal={arXiv preprint arXiv:2310.08475},\n      year={2023}\n}\n\n@misc{knowlm,\n  author = {Ningyu Zhang and Jintian Zhang and Xiaohan Wang and Honghao Gui and Kangwei Liu and Yinuo Jiang and Xiang Chen and Shengyu Mao and Shuofei Qiao and Yuqi Zhu and Zhen Bi and Jing Chen and Xiaozhuan Liang and Yixin Ou and Runnan Fang and Zekun Xi and Xin Xu and Lei Li and Peng Wang and Mengru Wang and Yunzhi Yao and Bozhong Tian and Yin Fang and Guozhou Zheng and Huajun Chen},\n  title = {KnowLM Technical Report},\n  year = {2023},\n url = {http://knowlm.zjukg.cn/},\n}\n```\n\n## \ud83c\udf89Contributors\n\n<a href=\"https://github.com/zjunlp/EasyEdit/graphs/contributors\">\n  <img src=\"https://contrib.rocks/image?repo=zjunlp/EasyEdit\" />\n</a>\n\nWe thank all the contributors to this project, more contributors are welcome!\n\n#### Other Related Projects\n\n- [ROME](https://github.com/kmeng01/rome)\n- [FastEdit](https://github.com/hiyouga/FastEdit)\n\n\ud83d\ude4c We would like to express our heartfelt gratitude for the contribution of [ROME](https://github.com/kmeng01/rome) to our project, as we have utilized portions of their source code in our project.\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "easyeditor - Editing Large Language Models",
    "version": "0.0.1.dev0",
    "project_urls": null,
    "split_keywords": [
        "easyeditor"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "02f4eae0491a4555a7650f6c1f7368104fb5165bed5361354bcbfec3038c18e7",
                "md5": "73429a2e56e9ba892fe58c6ae2815d8e",
                "sha256": "4384794e2b35feb8206bce18b5482251219f52e04fac2c4aefc28ed59d6d7ae8"
            },
            "downloads": -1,
            "filename": "easyeditor-0.0.1.dev0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "73429a2e56e9ba892fe58c6ae2815d8e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 247557,
            "upload_time": "2023-10-13T15:39:47",
            "upload_time_iso_8601": "2023-10-13T15:39:47.457856Z",
            "url": "https://files.pythonhosted.org/packages/02/f4/eae0491a4555a7650f6c1f7368104fb5165bed5361354bcbfec3038c18e7/easyeditor-0.0.1.dev0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-13 15:39:47",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "easyeditor"
}
        
Elapsed time: 0.33591s