eazyml


Nameeazyml JSON
Version 0.0.42 PyPI version JSON
download
home_pagehttps://eazyml.com/
SummaryEazyML provides a suite of APIs for training, testing and optimizing machine learning models with built-in AutoML capabilities, hyperparameter tuning, and cross-validation.
upload_time2025-02-22 04:22:49
maintainerNone
docs_urlNone
authorEazyml
requires_python>=3.7
licenseNone
keywords auto-ml automl machine-learning model-training hyperparameter-tuning feature-selection cross-validation confidence-score ml-api model-evaluation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ## EazyML Modeling
![Python](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)  ![PyPI package](https://img.shields.io/badge/pypi%20package-0.0.42-brightgreen) ![Code Style](https://img.shields.io/badge/code%20style-black-black)

![EazyML](https://github.com/EazyML/eazyml-docs/raw/refs/heads/master/EazyML_logo.png)

`EazyML` is a comprehensive Python package designed to simplify machine learning workflows for data scientists, engineers, and developers. With **AutoML capabilities**, eazyml enables automated feature selection, model training, hyperparameter optimization, and cross-validation, all with minimal code. The package trains multiple models in the background, ranks them by performance metrics, and recommends the best model for your use case.

### Features
- **Global Feature Importance**: Get insights into the most impactful features in your dataset.
- **Confidence Scoring**: Enhance predictive reliability with confidence scores.

`EazyML` is perfect for users looking to streamline the development of robust and efficient machine learning models.

## Installation
### User installation
The easiest way to install eazyml modeling is using pip:
```bash
pip install -U eazyml
```
### Dependencies
Eazyml Augmented Intelligence requires :
- werkzeug,
- unidecode,
- pandas,
- scikit-learn,
- nltk,
- pyyaml,
- requests

## Usage
Initialize and build a predictive model based on the provided dataset and options. 
Perform prediction on the given test data based on model options.

```python
from eazyml_augi import ez_init, ez_augi
# Replace 'your_license_key' with your actual EazyML license key
ez_init(license_key="your_license_key")

ez_init_model(
            df='train_dataframe'
            options={
                "model_type": "predictive",
                "accelerate": "yes",
                "outcome": "target",
                "remove_dependent": "no",
                "derive_numeric": "yes",
                "derive_text": "no",
                "phrases": {"*": []},
                "text_types": {"*": ["sentiments"]},
                "expressions": []
            }
    )
ez_predict(
            test_data ='test_dataframe'
            options={
                "extra_info": {
                },
                "model": "Specified model to be used for prediction",
                "outcome": "target",
            }
    )

```
You can find more information in the [documentation](https://eazyml.readthedocs.io/en/latest/packages/eazyml_model.html).


## Useful links and similar projects
- [Documentation](https://docs.eazyml.com)
- [Homepage](https://eazyml.com)
- If you have more questions or want to discuss a specific use case please book an appointment [here](https://eazyml.com/trust-in-ai)
- Here are some other EazyML's packages :

    - [eazyml](https://pypi.org/project/eazyml/): Eazyml provides a suite of APIs for training, testing and optimizing machine learning models with built-in AutoML capabilities, hyperparameter tuning, and cross-validation.
    - [eazyml-dq](https://pypi.org/project/eazyml-dq/): `eazyml-dq` provides APIs for comprehensive data quality assessment, including bias detection, outlier identification, and data drift analysis.
    - [eazyml-cf](https://pypi.org/project/eazyml-cf/): `eazyml-cf` provides APIs for counterfactual explanations, prescriptive analytics, and actionable insights to optimize predictive outcomes.
    - [eazyml-augi](https://pypi.org/project/eazyml-augi/): `eazyml-augi` provides APIs to uncover patterns, generate insights, and discover rules from training datasets.
    - [eazyml-xai](https://pypi.org/project/eazyml-xai/): `eazyml-xai` provides APIs for explainable AI (XAI), offering human-readable explanations, feature importance, and predictive reasoning.
    - [eazyml-xai-image](https://pypi.org/project/eazyml-xai-image/): eazyml-xai-image provides APIs for image explainable AI (XAI).

## License
This project is licensed under the [Proprietary License](https://github.com/EazyML/eazyml-docs/blob/master/LICENSE).

---

*Maintained by [EazyML](https://eazyml.com)*  
*© 2025 EazyML. All rights reserved.*


            

Raw data

            {
    "_id": null,
    "home_page": "https://eazyml.com/",
    "name": "eazyml",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "auto-ml, automl, machine-learning, model-training, hyperparameter-tuning, feature-selection, cross-validation, confidence-score, ml-api, model-evaluation",
    "author": "Eazyml",
    "author_email": "admin@ipsoftlabs.com",
    "download_url": "https://files.pythonhosted.org/packages/fc/62/376dbcac9513b448d5a04b941ea086c17405545a1bddc5c637e444a78db8/eazyml-0.0.42.tar.gz",
    "platform": null,
    "description": "## EazyML Modeling\n![Python](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)  ![PyPI package](https://img.shields.io/badge/pypi%20package-0.0.42-brightgreen) ![Code Style](https://img.shields.io/badge/code%20style-black-black)\n\n![EazyML](https://github.com/EazyML/eazyml-docs/raw/refs/heads/master/EazyML_logo.png)\n\n`EazyML` is a comprehensive Python package designed to simplify machine learning workflows for data scientists, engineers, and developers. With **AutoML capabilities**, eazyml enables automated feature selection, model training, hyperparameter optimization, and cross-validation, all with minimal code. The package trains multiple models in the background, ranks them by performance metrics, and recommends the best model for your use case.\n\n### Features\n- **Global Feature Importance**: Get insights into the most impactful features in your dataset.\n- **Confidence Scoring**: Enhance predictive reliability with confidence scores.\n\n`EazyML` is perfect for users looking to streamline the development of robust and efficient machine learning models.\n\n## Installation\n### User installation\nThe easiest way to install eazyml modeling is using pip:\n```bash\npip install -U eazyml\n```\n### Dependencies\nEazyml Augmented Intelligence requires :\n- werkzeug,\n- unidecode,\n- pandas,\n- scikit-learn,\n- nltk,\n- pyyaml,\n- requests\n\n## Usage\nInitialize and build a predictive model based on the provided dataset and options. \nPerform prediction on the given test data based on model options.\n\n```python\nfrom eazyml_augi import ez_init, ez_augi\n# Replace 'your_license_key' with your actual EazyML license key\nez_init(license_key=\"your_license_key\")\n\nez_init_model(\n            df='train_dataframe'\n            options={\n                \"model_type\": \"predictive\",\n                \"accelerate\": \"yes\",\n                \"outcome\": \"target\",\n                \"remove_dependent\": \"no\",\n                \"derive_numeric\": \"yes\",\n                \"derive_text\": \"no\",\n                \"phrases\": {\"*\": []},\n                \"text_types\": {\"*\": [\"sentiments\"]},\n                \"expressions\": []\n            }\n    )\nez_predict(\n            test_data ='test_dataframe'\n            options={\n                \"extra_info\": {\n                },\n                \"model\": \"Specified model to be used for prediction\",\n                \"outcome\": \"target\",\n            }\n    )\n\n```\nYou can find more information in the [documentation](https://eazyml.readthedocs.io/en/latest/packages/eazyml_model.html).\n\n\n## Useful links and similar projects\n- [Documentation](https://docs.eazyml.com)\n- [Homepage](https://eazyml.com)\n- If you have more questions or want to discuss a specific use case please book an appointment [here](https://eazyml.com/trust-in-ai)\n- Here are some other EazyML's packages :\n\n    - [eazyml](https://pypi.org/project/eazyml/): Eazyml provides a suite of APIs for training, testing and optimizing machine learning models with built-in AutoML capabilities, hyperparameter tuning, and cross-validation.\n    - [eazyml-dq](https://pypi.org/project/eazyml-dq/): `eazyml-dq` provides APIs for comprehensive data quality assessment, including bias detection, outlier identification, and data drift analysis.\n    - [eazyml-cf](https://pypi.org/project/eazyml-cf/): `eazyml-cf` provides APIs for counterfactual explanations, prescriptive analytics, and actionable insights to optimize predictive outcomes.\n    - [eazyml-augi](https://pypi.org/project/eazyml-augi/): `eazyml-augi` provides APIs to uncover patterns, generate insights, and discover rules from training datasets.\n    - [eazyml-xai](https://pypi.org/project/eazyml-xai/): `eazyml-xai` provides APIs for explainable AI (XAI), offering human-readable explanations, feature importance, and predictive reasoning.\n    - [eazyml-xai-image](https://pypi.org/project/eazyml-xai-image/): eazyml-xai-image provides APIs for image explainable AI (XAI).\n\n## License\nThis project is licensed under the [Proprietary License](https://github.com/EazyML/eazyml-docs/blob/master/LICENSE).\n\n---\n\n*Maintained by [EazyML](https://eazyml.com)*  \n*\u00c2\u00a9 2025 EazyML. All rights reserved.*\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "EazyML provides a suite of APIs for training, testing and optimizing machine learning models with built-in AutoML capabilities, hyperparameter tuning, and cross-validation.",
    "version": "0.0.42",
    "project_urls": {
        "Contact Us": "https://eazyml.com/trust-in-ai",
        "Documentation": "https://docs.eazyml.com/",
        "Homepage": "https://eazyml.com/",
        "eazyml": "https://pypi.org/project/eazyml/",
        "eazyml-augi": "https://pypi.org/project/eazyml-augi/",
        "eazyml-cf": "https://pypi.org/project/eazyml-cf/",
        "eazyml-dq": "https://pypi.org/project/eazyml-dq/",
        "eazyml-xai": "https://pypi.org/project/eazyml-xai/",
        "eazyml-xai-image": "https://pypi.org/project/eazyml-xai-image/"
    },
    "split_keywords": [
        "auto-ml",
        " automl",
        " machine-learning",
        " model-training",
        " hyperparameter-tuning",
        " feature-selection",
        " cross-validation",
        " confidence-score",
        " ml-api",
        " model-evaluation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "545339c3a30b009192aa1a645ecbf6a116c4bcf656c73beb0a36f08cbbf98e25",
                "md5": "b3047413ce0b2636ff75baa65bfc66ef",
                "sha256": "a7728c4518ed3d95cac9b06f31585c41cfeaec80cec42997b43de8408ff7725a"
            },
            "downloads": -1,
            "filename": "eazyml-0.0.42-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b3047413ce0b2636ff75baa65bfc66ef",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.7",
            "size": 101919762,
            "upload_time": "2025-02-22T04:21:14",
            "upload_time_iso_8601": "2025-02-22T04:21:14.676563Z",
            "url": "https://files.pythonhosted.org/packages/54/53/39c3a30b009192aa1a645ecbf6a116c4bcf656c73beb0a36f08cbbf98e25/eazyml-0.0.42-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fc62376dbcac9513b448d5a04b941ea086c17405545a1bddc5c637e444a78db8",
                "md5": "0f1f94d12490650f7809a38df7cdb4f9",
                "sha256": "ddc688dd89c3c61cf4e5646898d2dd58e4b3ac751e39cd3e6d691fd5b75f3ca9"
            },
            "downloads": -1,
            "filename": "eazyml-0.0.42.tar.gz",
            "has_sig": false,
            "md5_digest": "0f1f94d12490650f7809a38df7cdb4f9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 100361054,
            "upload_time": "2025-02-22T04:22:49",
            "upload_time_iso_8601": "2025-02-22T04:22:49.785923Z",
            "url": "https://files.pythonhosted.org/packages/fc/62/376dbcac9513b448d5a04b941ea086c17405545a1bddc5c637e444a78db8/eazyml-0.0.42.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-22 04:22:49",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "eazyml"
}
        
Elapsed time: 2.25682s