Name | eazyml JSON |
Version |
0.0.9
JSON |
| download |
home_page | https://eazyml.com/ |
Summary | Python client for EazyML Modeling |
upload_time | 2024-12-18 14:36:11 |
maintainer | None |
docs_url | None |
author | Eazyml |
requires_python | >=3.8 |
license | None |
keywords |
python
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
## Eazyml Modeling
![Python](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue) ![PyPI package](https://img.shields.io/badge/pypi%20package-0.0.9-brightgreen) ![Code Style](https://img.shields.io/badge/code%20style-black-black)
This API allows users to build machine learning models.
### Features
- Build model and predict on test data for given model.
- Provides utils function which can be used to beautify dataframe, dict or markdown format data.
### APIs
It provides following apis :
1. ez_init_model :
Initialize and build a predictive model based on the provided dataset and options.
```python
ez_init_model(
df='train_dataframe'
options={
"model_type": "predictive",
"accelerate": "yes",
"outcome": "target",
"remove_dependent": "no",
"derive_numeric": "yes",
"derive_text": "no",
"phrases": {"*": []},
"text_types": {"*": ["sentiments"]},
"expressions": []
}
)
2. ez_predict :
Perform prediction on the given test data based on model options and validate the input dataset.
```python
ez_predict(
test_data ='test_dataframe'
options={
"extra_info": {
},
"model": "Specified model to be used for prediction",
"outcome": "target",
}
)
Raw data
{
"_id": null,
"home_page": "https://eazyml.com/",
"name": "eazyml",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "python",
"author": "Eazyml",
"author_email": "admin@ipsoftlabs.com",
"download_url": "https://files.pythonhosted.org/packages/d7/c2/679f3ca77859790112f45a2d7b58f04df3715a95efdb59b996187c29728f/eazyml-0.0.9.tar.gz",
"platform": null,
"description": "## Eazyml Modeling\n![Python](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue) ![PyPI package](https://img.shields.io/badge/pypi%20package-0.0.9-brightgreen) ![Code Style](https://img.shields.io/badge/code%20style-black-black)\n\nThis API allows users to build machine learning models.\n\n### Features\n- Build model and predict on test data for given model.\n- Provides utils function which can be used to beautify dataframe, dict or markdown format data.\n\n### APIs\nIt provides following apis :\n\n1. ez_init_model :\nInitialize and build a predictive model based on the provided dataset and options.\n\n ```python\n ez_init_model(\n df='train_dataframe'\n options={\n \"model_type\": \"predictive\",\n \"accelerate\": \"yes\",\n \"outcome\": \"target\",\n \"remove_dependent\": \"no\",\n \"derive_numeric\": \"yes\",\n \"derive_text\": \"no\",\n \"phrases\": {\"*\": []},\n \"text_types\": {\"*\": [\"sentiments\"]},\n \"expressions\": []\n }\n )\n\n2. ez_predict :\nPerform prediction on the given test data based on model options and validate the input dataset.\n\n ```python\n ez_predict(\n test_data ='test_dataframe'\n options={\n \"extra_info\": {\n\n },\n \"model\": \"Specified model to be used for prediction\",\n \"outcome\": \"target\",\n }\n )\n\n",
"bugtrack_url": null,
"license": null,
"summary": "Python client for EazyML Modeling",
"version": "0.0.9",
"project_urls": {
"Documentation": "https://eazyml-docs.readthedocs.io/en/latest/",
"Homepage": "https://eazyml.com/"
},
"split_keywords": [
"python"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b73c54da490b0e0752019dcdcc235a03151ae08e9a1e9620be0e8aba220d5805",
"md5": "381a79b9adc0c8d931a3aa302bf2e587",
"sha256": "4eb904130a8d79546849954f7a0bc48c1ed83d798c4440383eb3903b46d3d9d5"
},
"downloads": -1,
"filename": "eazyml-0.0.9-py3-none-any.whl",
"has_sig": false,
"md5_digest": "381a79b9adc0c8d931a3aa302bf2e587",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 43273576,
"upload_time": "2024-12-18T14:34:48",
"upload_time_iso_8601": "2024-12-18T14:34:48.167491Z",
"url": "https://files.pythonhosted.org/packages/b7/3c/54da490b0e0752019dcdcc235a03151ae08e9a1e9620be0e8aba220d5805/eazyml-0.0.9-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d7c2679f3ca77859790112f45a2d7b58f04df3715a95efdb59b996187c29728f",
"md5": "4df7081d32956b298bb37e7d36e1eb4a",
"sha256": "9f718d700b6dd44f22317ea30efabdc36effe1655ecc2854e9533d2010124504"
},
"downloads": -1,
"filename": "eazyml-0.0.9.tar.gz",
"has_sig": false,
"md5_digest": "4df7081d32956b298bb37e7d36e1eb4a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 42465223,
"upload_time": "2024-12-18T14:36:11",
"upload_time_iso_8601": "2024-12-18T14:36:11.438315Z",
"url": "https://files.pythonhosted.org/packages/d7/c2/679f3ca77859790112f45a2d7b58f04df3715a95efdb59b996187c29728f/eazyml-0.0.9.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-18 14:36:11",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "eazyml"
}