## Eazyml Augmented Intelligence
  

A collection of APIs to discover patterns, generate insights, and uncover
rules in training datasets. Each discovered pattern is expressed as a set of
rules/conditions on feature variables, allowing users to analyze and apply
these insights to their data. Ideal for pattern recognition, interpretable AI,
and augmented intelligence workflows
### Features
- **Pattern Mining**: Discover meaningful rules in datasets.
- **Insight Generation**: Generate high-value insights with associated scores.
- **Application of Rules**: Apply discovered patterns to datasets for further analysis.
Ideal for use cases like interpretability, training data analysis, and building augmented intelligence solutions.
## Installation
### User installation
The easiest way to install augmented intelligence is using pip:
```bash
pip install -U eazyml-augi
```
### Dependencies
Eazyml Augmented Intelligence requires :
- werkzeug,
- unidecode,
- pandas,
- scikit-learn,
- nltk,
- pyyaml,
- requests
## Usage
Augmented Intelligence can be used by initalizing EazyML and then getting insights for given training data.
```python
from eazyml_augi import ez_init, ez_augi
# Replace 'your_license_key' with your actual EazyML license key
ez_init(license_key="your_license_key")
# Perform data insights for given training data using EazyML.
response = ez_augi(mode='classification',
outcome='target',
train_file_path='train.csv')
```
You can find more information in the [documentation](https://eazyml.readthedocs.io/en/latest/packages/eazyml_augi.html).
## Useful links and similar projects
- [Documentation](https://docs.eazyml.com)
- [Homepage](https://eazyml.com)
- If you have more questions or want to discuss a specific use case please book an appointment [here](https://eazyml.com/trust-in-ai)
- Here are some other EazyML's packages :
- [eazyml](https://pypi.org/project/eazyml/): Eazyml provides a suite of APIs for training, testing and optimizing machine learning models with built-in AutoML capabilities, hyperparameter tuning, and cross-validation.
- [eazyml-dq](https://pypi.org/project/eazyml-dq/): `eazyml-dq` provides APIs for comprehensive data quality assessment, including bias detection, outlier identification, and data drift analysis.
- [eazyml-cf](https://pypi.org/project/eazyml-cf/): `eazyml-cf` provides APIs for counterfactual explanations, prescriptive analytics, and actionable insights to optimize predictive outcomes.
- [eazyml-augi](https://pypi.org/project/eazyml-augi/): `eazyml-augi` provides APIs to uncover patterns, generate insights, and discover rules from training datasets.
- [eazyml-xai](https://pypi.org/project/eazyml-xai/): `eazyml-xai` provides APIs for explainable AI (XAI), offering human-readable explanations, feature importance, and predictive reasoning.
- [eazyml-xai-image](https://pypi.org/project/eazyml-xai-image/): eazyml-xai-image provides APIs for image explainable AI (XAI).
## License
This project is licensed under the [Proprietary License](https://github.com/EazyML/eazyml-docs/blob/master/LICENSE).
---
*Maintained by [EazyML](https://eazyml.com)*
*© 2025 EazyML. All rights reserved.*
Raw data
{
"_id": null,
"home_page": "https://eazyml.com/",
"name": "eazyml-augi",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "pattern-discovery, rule-mining, data-insights, insight-generation, augmented-intelligence, data-analysis, rule-discovery, data-patterns, machine-learning, data-science, ml-api, training-data-analysis, interpretable-ai",
"author": "Eazyml",
"author_email": "admin@ipsoftlabs.com",
"download_url": "https://files.pythonhosted.org/packages/14/4f/5707083069c828740cf23d14464c2873aa50a66a8926fc7410090d8bf690/eazyml_augi-0.0.37.tar.gz",
"platform": null,
"description": "## Eazyml Augmented Intelligence\r\n  \r\n\r\n\r\n\r\nA collection of APIs to discover patterns, generate insights, and uncover\r\nrules in training datasets. Each discovered pattern is expressed as a set of\r\nrules/conditions on feature variables, allowing users to analyze and apply\r\nthese insights to their data. Ideal for pattern recognition, interpretable AI,\r\nand augmented intelligence workflows\r\n\r\n### Features\r\n- **Pattern Mining**: Discover meaningful rules in datasets.\r\n- **Insight Generation**: Generate high-value insights with associated scores.\r\n- **Application of Rules**: Apply discovered patterns to datasets for further analysis.\r\n\r\nIdeal for use cases like interpretability, training data analysis, and building augmented intelligence solutions.\r\n\r\n## Installation\r\n### User installation\r\nThe easiest way to install augmented intelligence is using pip:\r\n```bash\r\npip install -U eazyml-augi\r\n```\r\n### Dependencies\r\nEazyml Augmented Intelligence requires :\r\n- werkzeug,\r\n- unidecode,\r\n- pandas,\r\n- scikit-learn,\r\n- nltk,\r\n- pyyaml,\r\n- requests\r\n\r\n## Usage\r\nAugmented Intelligence can be used by initalizing EazyML and then getting insights for given training data.\r\n\r\n```python\r\nfrom eazyml_augi import ez_init, ez_augi\r\n# Replace 'your_license_key' with your actual EazyML license key\r\nez_init(license_key=\"your_license_key\")\r\n# Perform data insights for given training data using EazyML.\r\nresponse = ez_augi(mode='classification',\r\n outcome='target',\r\n train_file_path='train.csv')\r\n```\r\nYou can find more information in the [documentation](https://eazyml.readthedocs.io/en/latest/packages/eazyml_augi.html).\r\n\r\n\r\n## Useful links and similar projects\r\n- [Documentation](https://docs.eazyml.com)\r\n- [Homepage](https://eazyml.com)\r\n- If you have more questions or want to discuss a specific use case please book an appointment [here](https://eazyml.com/trust-in-ai)\r\n- Here are some other EazyML's packages :\r\n\r\n - [eazyml](https://pypi.org/project/eazyml/): Eazyml provides a suite of APIs for training, testing and optimizing machine learning models with built-in AutoML capabilities, hyperparameter tuning, and cross-validation.\r\n - [eazyml-dq](https://pypi.org/project/eazyml-dq/): `eazyml-dq` provides APIs for comprehensive data quality assessment, including bias detection, outlier identification, and data drift analysis.\r\n - [eazyml-cf](https://pypi.org/project/eazyml-cf/): `eazyml-cf` provides APIs for counterfactual explanations, prescriptive analytics, and actionable insights to optimize predictive outcomes.\r\n - [eazyml-augi](https://pypi.org/project/eazyml-augi/): `eazyml-augi` provides APIs to uncover patterns, generate insights, and discover rules from training datasets.\r\n - [eazyml-xai](https://pypi.org/project/eazyml-xai/): `eazyml-xai` provides APIs for explainable AI (XAI), offering human-readable explanations, feature importance, and predictive reasoning.\r\n - [eazyml-xai-image](https://pypi.org/project/eazyml-xai-image/): eazyml-xai-image provides APIs for image explainable AI (XAI).\r\n\r\n## License\r\nThis project is licensed under the [Proprietary License](https://github.com/EazyML/eazyml-docs/blob/master/LICENSE).\r\n\r\n---\r\n\r\n*Maintained by [EazyML](https://eazyml.com)* \r\n*\u00c2\u00a9 2025 EazyML. All rights reserved.*\r\n",
"bugtrack_url": null,
"license": null,
"summary": "eazyml-augi provides APIs to uncover patterns, generate insights, and discover rules from training datasets.",
"version": "0.0.37",
"project_urls": {
"Contact Us": "https://eazyml.com/trust-in-ai",
"Documentation": "https://docs.eazyml.com/",
"Homepage": "https://eazyml.com/",
"eazyml": "https://pypi.org/project/eazyml/",
"eazyml-augi": "https://pypi.org/project/eazyml-augi/",
"eazyml-cf": "https://pypi.org/project/eazyml-cf/",
"eazyml-dq": "https://pypi.org/project/eazyml-dq/",
"eazyml-xai": "https://pypi.org/project/eazyml-xai/",
"eazyml-xai-image": "https://pypi.org/project/eazyml-xai-image/"
},
"split_keywords": [
"pattern-discovery",
" rule-mining",
" data-insights",
" insight-generation",
" augmented-intelligence",
" data-analysis",
" rule-discovery",
" data-patterns",
" machine-learning",
" data-science",
" ml-api",
" training-data-analysis",
" interpretable-ai"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "14022a1f07647ad2ddb47963d446ab3eb453d63db4ecbbdf63c797708d450d84",
"md5": "e067284dfceaedbc5c7498a14c1659ee",
"sha256": "cbb336a8deb3ab539fd6e72b012e56e7181a36fbf766215e079bb9183b88405b"
},
"downloads": -1,
"filename": "eazyml_augi-0.0.37-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "e067284dfceaedbc5c7498a14c1659ee",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": ">=3.7",
"size": 43322477,
"upload_time": "2025-02-10T04:50:53",
"upload_time_iso_8601": "2025-02-10T04:50:53.950267Z",
"url": "https://files.pythonhosted.org/packages/14/02/2a1f07647ad2ddb47963d446ab3eb453d63db4ecbbdf63c797708d450d84/eazyml_augi-0.0.37-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "144f5707083069c828740cf23d14464c2873aa50a66a8926fc7410090d8bf690",
"md5": "6d03e88bd06854e73782ab06d9399d22",
"sha256": "b16c25d71ebc449363981287482d7d3b74ee8614b9032be5d00996de2cf804f7"
},
"downloads": -1,
"filename": "eazyml_augi-0.0.37.tar.gz",
"has_sig": false,
"md5_digest": "6d03e88bd06854e73782ab06d9399d22",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 42625574,
"upload_time": "2025-02-10T04:51:20",
"upload_time_iso_8601": "2025-02-10T04:51:20.325470Z",
"url": "https://files.pythonhosted.org/packages/14/4f/5707083069c828740cf23d14464c2873aa50a66a8926fc7410090d8bf690/eazyml_augi-0.0.37.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-10 04:51:20",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "eazyml-augi"
}