## EazyML Responsible-AI: Modeling
  

`eazyml-automl` is a comprehensive python package designed to simplify machine learning workflows for data scientists, engineers, and developers. With **AutoML capabilities**, eazyml enables automated feature selection, model training, hyperparameter optimization, and cross-validation, all with minimal code. The package trains multiple models in the background, ranks them by performance metrics, and recommends the best model for your use case.
### Features
- **Global Feature Importance**: Get insights into the most impactful features in your dataset.
- **Confidence Scoring**: Enhance predictive reliability with confidence scores.
`eazyml-automl` is perfect for users looking to streamline the development of robust and efficient machine learning models.
## Installation
### User installation
The easiest way to install eazyml modeling is using pip:
```bash
pip install -U eazyml-automl
```
### Dependencies
Eazyml Augmented Intelligence requires :
- werkzeug,
- unidecode,
- pandas,
- scikit-learn,
- nltk,
- pyyaml,
- requests
## Usage
Initialize and build a predictive model based on the provided dataset and options.
Perform prediction on the given test data based on model options.
```python
from eazyml import ez_build_model, ez_predict
# initialize: setup book-keeping, access_key if required
_ = ez_init()
ez_build_model(
train_data(`DataFrame/str`) = 'train_dataframe/train_data_path',
outcome(`str`) = 'target',
options(`dict`) = {
"model_type"(`str`): "predictive",
"spark_session"(`SparkSession`): "PYSPARK_SESSION"
}
)
ez_predict(
test_data(`DataFrame/str`) = 'test_dataframe/test_data_path',
model_info (`Bytes`) = 'Encripted model_info from ez_build_model response'
options (`dict`) = {
"model"(`str`): "Specified model to be used for prediction from "model_performance['Model']" from ez_build_model",
"confidence_score"(`bool`): "default=False. if True, provides confidence score for classification models",
"spark_session"(`SparkSession`): "PYSPARK_SESSION",
"spark_model"(`model/pipeline`): "Pipeline from ez_build_model only if spark_session provided."
}
)
```
You can find more information in the [documentation](https://eazyml.readthedocs.io/en/latest/packages/eazyml_model.html).
## Useful links, other packages from EazyML family
- [Documentation](https://docs.eazyml.com)
- [Homepage](https://eazyml.com)
- If you have questions or would like to discuss a use case, please contact us [here](https://eazyml.com/trust-in-ai)
- Here are the other packages from EazyML suite:
- [eazyml-automl](https://pypi.org/project/eazyml-automl/): eazyml-automl provides a suite of APIs for training, optimizing and validating machine learning models with built-in AutoML capabilities, hyperparameter tuning, and cross-validation.
- [eazyml-data-quality](https://pypi.org/project/eazyml-data-quality/): eazyml-data-quality provides APIs for comprehensive data quality assessment, including bias detection, outlier identification, and drift analysis for both data and models.
- [eazyml-counterfactual](https://pypi.org/project/eazyml-counterfactual/): eazyml-counterfactual provides APIs for optimal prescriptive analytics, counterfactual explanations, and actionable insights to optimize predictive outcomes to align with your objectives.
- [eazyml-insight](https://pypi.org/project/eazyml-insight/): eazyml-insight provides APIs to discover patterns, generate insights, and mine rules from your datasets.
- [eazyml-xai](https://pypi.org/project/eazyml-xai/): eazyml-xai provides APIs for explainable AI (XAI), offering human-readable explanations, feature importance, and predictive reasoning.
- [eazyml-xai-image](https://pypi.org/project/eazyml-xai-image/): eazyml-xai-image provides APIs for image explainable AI (XAI).
## License
This project is licensed under the [Proprietary License](https://github.com/EazyML/eazyml-docs/blob/master/LICENSE).
---
Maintained by [EazyML](https://eazyml.com)
© 2025 EazyML. All rights reserved.
Raw data
{
"_id": null,
"home_page": "https://eazyml.com/",
"name": "eazyml-automl",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "auto-ml, automl, machine-learning, model-training, hyperparameter-tuning, feature-selection, cross-validation, confidence-score, ml-api, model-evaluation",
"author": "EazyML",
"author_email": "admin@ipsoftlabs.com",
"download_url": null,
"platform": null,
"description": "## EazyML Responsible-AI: Modeling\r\n  \r\n\r\n\r\n\r\n`eazyml-automl` is a comprehensive python package designed to simplify machine learning workflows for data scientists, engineers, and developers. With **AutoML capabilities**, eazyml enables automated feature selection, model training, hyperparameter optimization, and cross-validation, all with minimal code. The package trains multiple models in the background, ranks them by performance metrics, and recommends the best model for your use case.\r\n\r\n### Features\r\n- **Global Feature Importance**: Get insights into the most impactful features in your dataset.\r\n- **Confidence Scoring**: Enhance predictive reliability with confidence scores.\r\n\r\n`eazyml-automl` is perfect for users looking to streamline the development of robust and efficient machine learning models.\r\n\r\n## Installation\r\n### User installation\r\nThe easiest way to install eazyml modeling is using pip:\r\n```bash\r\npip install -U eazyml-automl\r\n```\r\n### Dependencies\r\nEazyml Augmented Intelligence requires :\r\n- werkzeug,\r\n- unidecode,\r\n- pandas,\r\n- scikit-learn,\r\n- nltk,\r\n- pyyaml,\r\n- requests\r\n\r\n## Usage\r\nInitialize and build a predictive model based on the provided dataset and options. \r\nPerform prediction on the given test data based on model options.\r\n\r\n```python\r\nfrom eazyml import ez_build_model, ez_predict\r\n\r\n# initialize: setup book-keeping, access_key if required \r\n_ = ez_init()\r\n\r\nez_build_model(\r\n train_data(`DataFrame/str`) = 'train_dataframe/train_data_path',\r\n outcome(`str`) = 'target',\r\n options(`dict`) = {\r\n \"model_type\"(`str`): \"predictive\",\r\n \"spark_session\"(`SparkSession`): \"PYSPARK_SESSION\"\r\n }\r\n )\r\nez_predict(\r\n test_data(`DataFrame/str`) = 'test_dataframe/test_data_path',\r\n model_info (`Bytes`) = 'Encripted model_info from ez_build_model response'\r\n options (`dict`) = {\r\n \"model\"(`str`): \"Specified model to be used for prediction from \"model_performance['Model']\" from ez_build_model\",\r\n \"confidence_score\"(`bool`): \"default=False. if True, provides confidence score for classification models\",\r\n \"spark_session\"(`SparkSession`): \"PYSPARK_SESSION\",\r\n \"spark_model\"(`model/pipeline`): \"Pipeline from ez_build_model only if spark_session provided.\"\r\n }\r\n )\r\n\r\n```\r\nYou can find more information in the [documentation](https://eazyml.readthedocs.io/en/latest/packages/eazyml_model.html).\r\n\r\n\r\n## Useful links, other packages from EazyML family\r\n- [Documentation](https://docs.eazyml.com)\r\n- [Homepage](https://eazyml.com)\r\n- If you have questions or would like to discuss a use case, please contact us [here](https://eazyml.com/trust-in-ai)\r\n- Here are the other packages from EazyML suite:\r\n\r\n - [eazyml-automl](https://pypi.org/project/eazyml-automl/): eazyml-automl provides a suite of APIs for training, optimizing and validating machine learning models with built-in AutoML capabilities, hyperparameter tuning, and cross-validation.\r\n - [eazyml-data-quality](https://pypi.org/project/eazyml-data-quality/): eazyml-data-quality provides APIs for comprehensive data quality assessment, including bias detection, outlier identification, and drift analysis for both data and models.\r\n - [eazyml-counterfactual](https://pypi.org/project/eazyml-counterfactual/): eazyml-counterfactual provides APIs for optimal prescriptive analytics, counterfactual explanations, and actionable insights to optimize predictive outcomes to align with your objectives.\r\n - [eazyml-insight](https://pypi.org/project/eazyml-insight/): eazyml-insight provides APIs to discover patterns, generate insights, and mine rules from your datasets.\r\n - [eazyml-xai](https://pypi.org/project/eazyml-xai/): eazyml-xai provides APIs for explainable AI (XAI), offering human-readable explanations, feature importance, and predictive reasoning.\r\n - [eazyml-xai-image](https://pypi.org/project/eazyml-xai-image/): eazyml-xai-image provides APIs for image explainable AI (XAI).\r\n\r\n## License\r\nThis project is licensed under the [Proprietary License](https://github.com/EazyML/eazyml-docs/blob/master/LICENSE).\r\n\r\n---\r\n\r\nMaintained by [EazyML](https://eazyml.com) \r\n\u00c2\u00a9 2025 EazyML. All rights reserved.\r\n",
"bugtrack_url": null,
"license": null,
"summary": "EazyML provides a suite of APIs for training, testing and optimizing machine learning models with built-in AutoML capabilities, hyperparameter tuning, and cross-validation.",
"version": "0.0.58",
"project_urls": {
"Contact Us": "https://eazyml.com/trust-in-ai",
"Documentation": "https://docs.eazyml.com/",
"Homepage": "https://eazyml.com/",
"eazyml-automl": "https://pypi.org/project/eazyml-automl/",
"eazyml-counterfactual": "https://pypi.org/project/eazyml-counterfactual/",
"eazyml-data-quality": "https://pypi.org/project/eazyml-data-quality/",
"eazyml-insight": "https://pypi.org/project/eazyml-insight/",
"eazyml-xai": "https://pypi.org/project/eazyml-xai/",
"eazyml-xai-image": "https://pypi.org/project/eazyml-xai-image/"
},
"split_keywords": [
"auto-ml",
" automl",
" machine-learning",
" model-training",
" hyperparameter-tuning",
" feature-selection",
" cross-validation",
" confidence-score",
" ml-api",
" model-evaluation"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "8bef7231ac7d5544d2e5e5ceccf4a15a734ed369f7c62ea9f8af9a50486a5abf",
"md5": "0e0e6f66a145e2eb1ab944e090ccfa97",
"sha256": "2902bbaa4a80272642ddf067813b81474aab3197dfb3ad6fc9d707823fe5d5ef"
},
"downloads": -1,
"filename": "eazyml_automl-0.0.58-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "0e0e6f66a145e2eb1ab944e090ccfa97",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": ">=3.7",
"size": 76961465,
"upload_time": "2025-02-27T16:05:58",
"upload_time_iso_8601": "2025-02-27T16:05:58.051776Z",
"url": "https://files.pythonhosted.org/packages/8b/ef/7231ac7d5544d2e5e5ceccf4a15a734ed369f7c62ea9f8af9a50486a5abf/eazyml_automl-0.0.58-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-27 16:05:58",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "eazyml-automl"
}