Name | eazyml-xai-image JSON |
Version |
0.0.35
JSON |
| download |
home_page | https://eazyml.com/ |
Summary | eazyml-image-xai provides APIs for explainable AI (XAI) |
upload_time | 2025-02-27 16:02:36 |
maintainer | None |
docs_url | None |
author | Eazyml |
requires_python | >=3.7 |
license | None |
keywords |
python
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
## EazyML Responsible-AI: Image XAI
  

This package focuses on segmentation prediction, explainability, active learning and online learning for image dataset.
### Features
- Active learning focuses on reducing the amount of labeled data required to train the model while maximizing performance, making it particularly useful when labeling data is expensive or time-consuming. By prioritizing uncertain or diverse examples, active learning accelerates model improvement and enhances efficiency.
- Online learning is a machine learning approach where models are trained incrementally as data becomes available, rather than using a fixed, pre-existing dataset. This method is well-suited for dynamic environments, enabling real-time updates and adaptability to new patterns or changes in data streams.
## Installation
### User installation
The easiest way to install augmented intelligence is using pip:
```bash
pip install -U eazyml-xai-image
```
### Dependencies
Eazyml Augmented Intelligence requires :
- tensorflow
- segmentation-models==1.0.1
- lime
- opencv-python
- flask
- pyyaml
## Usage
It provides following apis :
1. ez_image_active_learning :
This API sorts test images based on explainability scores for the model’s predictions. If a “query count” is specified in the options, it returns the indices and corresponding scores for that number of inputs.
```python
ez_image_active_learning(
filenames=['..', '..'],
model_path='path_of_model',
predicted_filenames=['path_of_model_prediction_file_names'],
options={
"query_count": 10,
"training_data_path": "path/to/training/data.csv",
"score_strategy": "weighted-moments",
"al_strategy": "pool-based",
"xai_strategy": "gradcam",
"gradcam_layer": "layer_name",
"model_num": "1"
}
)
```
2. ez_image_model_evaluate :
This API validates a model using provided data and returns the model evaluation.
```python
ez_image_model_evaluate(
validation_data_path='path_of_new_data_for_validation',
model_path='path_of_model',
options={
"required_functions": {
"loss_fn": '...',
"metric_fns": '...',
"input_preprocess_fn": '',
"label_preprocess_fn": '',
"output_process_fn": ''
},
"batch_size": 32,
"log_file": "path/to/log/file"
})
```
3. ez_image_online_learning :
This API updates a given model using new training data and saves the updated model. The update process adapts based on the Online Learning strategy or optimizes performance on provided validation data.
```python
ez_image_online_learning(
validation_data_path='path_of_new_data_for_validation',
model_path='path_of_model',
options={
"required_functions": {
"loss_fn": '...',
"metric_fns": '...',
"input_preprocess_fn": '',
"label_preprocess_fn": '',
"output_process_fn": ''
},
"batch_size": 32,
"log_file": "path/to/log/file"
}
)
```
4. ez_xai_image_explain :
This API provides confidence scores and image explanations for model predictions. It can process a single image or multiple images, returning explanations for all predictions.
```python
ez_xai_image_explain(
filenames=['..', '..'],
model_path='path_of_model',
predicted_filenames=['path_of_model_prediction_file_names'],
options={
"training_data_path": "...",
"score_strategy": "weighted-moments",
"xai_strategy": "gradcam",
"xai_image_path": "...",
"gradcam_layer": "layer_name",
"model_num": "1",
"required_functions": {...}
}
)
```
You can find more information in the [documentation](https://eazyml.readthedocs.io/en/latest/packages/eazyml_xai_image.html).
## Useful links, other packages from EazyML family
- [Documentation](https://docs.eazyml.com)
- [Homepage](https://eazyml.com)
- If you have questions or would like to discuss a use case, please contact us [here](https://eazyml.com/trust-in-ai)
- Here are the other packages from EazyML suite:
- [eazyml-automl](https://pypi.org/project/eazyml-automl/): eazyml-automl provides a suite of APIs for training, optimizing and validating machine learning models with built-in AutoML capabilities, hyperparameter tuning, and cross-validation.
- [eazyml-data-quality](https://pypi.org/project/eazyml-data-quality/): eazyml-data-quality provides APIs for comprehensive data quality assessment, including bias detection, outlier identification, and drift analysis for both data and models.
- [eazyml-counterfactual](https://pypi.org/project/eazyml-counterfactual/): eazyml-counterfactual provides APIs for optimal prescriptive analytics, counterfactual explanations, and actionable insights to optimize predictive outcomes to align with your objectives.
- [eazyml-insight](https://pypi.org/project/eazyml-insight/): eazyml-insight provides APIs to discover patterns, generate insights, and mine rules from your datasets.
- [eazyml-xai](https://pypi.org/project/eazyml-xai/): eazyml-xai provides APIs for explainable AI (XAI), offering human-readable explanations, feature importance, and predictive reasoning.
- [eazyml-xai-image](https://pypi.org/project/eazyml-xai-image/): eazyml-xai-image provides APIs for image explainable AI (XAI).
## License
This project is licensed under the [Proprietary License](https://github.com/EazyML/eazyml-docs/blob/master/LICENSE).
---
Maintained by [EazyML](https://eazyml.com)
© 2025 EazyML. All rights reserved.
Raw data
{
"_id": null,
"home_page": "https://eazyml.com/",
"name": "eazyml-xai-image",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "python",
"author": "Eazyml",
"author_email": "admin@ipsoftlabs.com",
"download_url": "https://files.pythonhosted.org/packages/54/68/67393fe6bd561ae816ffa52d0feffd4b1cae1c05c7e752f8e0940e699126/eazyml_xai_image-0.0.35.tar.gz",
"platform": null,
"description": "## EazyML Responsible-AI: Image XAI\r\n  \r\n\r\n\r\n\r\nThis package focuses on segmentation prediction, explainability, active learning and online learning for image dataset.\r\n\r\n### Features\r\n- Active learning focuses on reducing the amount of labeled data required to train the model while maximizing performance, making it particularly useful when labeling data is expensive or time-consuming. By prioritizing uncertain or diverse examples, active learning accelerates model improvement and enhances efficiency.\r\n- Online learning is a machine learning approach where models are trained incrementally as data becomes available, rather than using a fixed, pre-existing dataset. This method is well-suited for dynamic environments, enabling real-time updates and adaptability to new patterns or changes in data streams.\r\n\r\n## Installation\r\n### User installation\r\nThe easiest way to install augmented intelligence is using pip:\r\n```bash\r\npip install -U eazyml-xai-image\r\n```\r\n\r\n### Dependencies\r\nEazyml Augmented Intelligence requires :\r\n- tensorflow\r\n- segmentation-models==1.0.1\r\n- lime\r\n- opencv-python\r\n- flask\r\n- pyyaml\r\n\r\n## Usage\r\nIt provides following apis :\r\n\r\n1. ez_image_active_learning :\r\nThis API sorts test images based on explainability scores for the model\u2019s predictions. If a \u201cquery count\u201d is specified in the options, it returns the indices and corresponding scores for that number of inputs.\r\n\r\n ```python\r\n ez_image_active_learning(\r\n filenames=['..', '..'],\r\n model_path='path_of_model',\r\n predicted_filenames=['path_of_model_prediction_file_names'],\r\n options={\r\n \"query_count\": 10,\r\n \"training_data_path\": \"path/to/training/data.csv\",\r\n \"score_strategy\": \"weighted-moments\",\r\n \"al_strategy\": \"pool-based\",\r\n \"xai_strategy\": \"gradcam\",\r\n \"gradcam_layer\": \"layer_name\",\r\n \"model_num\": \"1\"\r\n }\r\n )\r\n ```\r\n\r\n2. ez_image_model_evaluate :\r\nThis API validates a model using provided data and returns the model evaluation.\r\n\r\n ```python\r\n ez_image_model_evaluate(\r\n validation_data_path='path_of_new_data_for_validation',\r\n model_path='path_of_model',\r\n options={\r\n \"required_functions\": {\r\n \"loss_fn\": '...',\r\n \"metric_fns\": '...',\r\n \"input_preprocess_fn\": '',\r\n \"label_preprocess_fn\": '',\r\n \"output_process_fn\": ''\r\n },\r\n \"batch_size\": 32,\r\n \"log_file\": \"path/to/log/file\"\r\n })\r\n ```\r\n\r\n3. ez_image_online_learning :\r\nThis API updates a given model using new training data and saves the updated model. The update process adapts based on the Online Learning strategy or optimizes performance on provided validation data.\r\n\r\n ```python\r\n ez_image_online_learning(\r\n validation_data_path='path_of_new_data_for_validation',\r\n model_path='path_of_model',\r\n options={\r\n \"required_functions\": {\r\n \"loss_fn\": '...',\r\n \"metric_fns\": '...',\r\n \"input_preprocess_fn\": '',\r\n \"label_preprocess_fn\": '',\r\n \"output_process_fn\": ''\r\n },\r\n \"batch_size\": 32,\r\n \"log_file\": \"path/to/log/file\"\r\n }\r\n )\r\n ```\r\n\r\n4. ez_xai_image_explain :\r\nThis API provides confidence scores and image explanations for model predictions. It can process a single image or multiple images, returning explanations for all predictions.\r\n\r\n ```python\r\n ez_xai_image_explain(\r\n filenames=['..', '..'],\r\n model_path='path_of_model',\r\n predicted_filenames=['path_of_model_prediction_file_names'],\r\n options={\r\n \"training_data_path\": \"...\",\r\n \"score_strategy\": \"weighted-moments\",\r\n \"xai_strategy\": \"gradcam\",\r\n \"xai_image_path\": \"...\",\r\n \"gradcam_layer\": \"layer_name\",\r\n \"model_num\": \"1\",\r\n \"required_functions\": {...}\r\n }\r\n )\r\n ```\r\nYou can find more information in the [documentation](https://eazyml.readthedocs.io/en/latest/packages/eazyml_xai_image.html).\r\n\r\n## Useful links, other packages from EazyML family\r\n- [Documentation](https://docs.eazyml.com)\r\n- [Homepage](https://eazyml.com)\r\n- If you have questions or would like to discuss a use case, please contact us [here](https://eazyml.com/trust-in-ai)\r\n- Here are the other packages from EazyML suite:\r\n\r\n - [eazyml-automl](https://pypi.org/project/eazyml-automl/): eazyml-automl provides a suite of APIs for training, optimizing and validating machine learning models with built-in AutoML capabilities, hyperparameter tuning, and cross-validation.\r\n - [eazyml-data-quality](https://pypi.org/project/eazyml-data-quality/): eazyml-data-quality provides APIs for comprehensive data quality assessment, including bias detection, outlier identification, and drift analysis for both data and models.\r\n - [eazyml-counterfactual](https://pypi.org/project/eazyml-counterfactual/): eazyml-counterfactual provides APIs for optimal prescriptive analytics, counterfactual explanations, and actionable insights to optimize predictive outcomes to align with your objectives.\r\n - [eazyml-insight](https://pypi.org/project/eazyml-insight/): eazyml-insight provides APIs to discover patterns, generate insights, and mine rules from your datasets.\r\n - [eazyml-xai](https://pypi.org/project/eazyml-xai/): eazyml-xai provides APIs for explainable AI (XAI), offering human-readable explanations, feature importance, and predictive reasoning.\r\n - [eazyml-xai-image](https://pypi.org/project/eazyml-xai-image/): eazyml-xai-image provides APIs for image explainable AI (XAI).\r\n\r\n## License\r\nThis project is licensed under the [Proprietary License](https://github.com/EazyML/eazyml-docs/blob/master/LICENSE).\r\n\r\n---\r\n\r\nMaintained by [EazyML](https://eazyml.com) \r\n\u00a9 2025 EazyML. All rights reserved.\r\n",
"bugtrack_url": null,
"license": null,
"summary": "eazyml-image-xai provides APIs for explainable AI (XAI)",
"version": "0.0.35",
"project_urls": {
"Contact Us": "https://eazyml.com/trust-in-ai",
"Documentation": "https://docs.eazyml.com/",
"Homepage": "https://eazyml.com/",
"eazyml-automl": "https://pypi.org/project/eazyml-automl/",
"eazyml-counterfactual": "https://pypi.org/project/eazyml-counterfactual/",
"eazyml-data-quality": "https://pypi.org/project/eazyml-data-quality/",
"eazyml-insight": "https://pypi.org/project/eazyml-insight/",
"eazyml-xai": "https://pypi.org/project/eazyml-xai/",
"eazyml-xai-image": "https://pypi.org/project/eazyml-xai-image/"
},
"split_keywords": [
"python"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "41d8753e994ab0a51efae7bfcf89bc24bb06c101143f3d7b368657e5e79df950",
"md5": "dc3f8b6ba774e020a6e09a4625babb08",
"sha256": "9b995a2faf684e6a23cc7a8d4aa4acc63a6f79d03377795f700c241f7be3b66b"
},
"downloads": -1,
"filename": "eazyml_xai_image-0.0.35-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "dc3f8b6ba774e020a6e09a4625babb08",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": ">=3.7",
"size": 45444030,
"upload_time": "2025-02-27T16:02:22",
"upload_time_iso_8601": "2025-02-27T16:02:22.435827Z",
"url": "https://files.pythonhosted.org/packages/41/d8/753e994ab0a51efae7bfcf89bc24bb06c101143f3d7b368657e5e79df950/eazyml_xai_image-0.0.35-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "546867393fe6bd561ae816ffa52d0feffd4b1cae1c05c7e752f8e0940e699126",
"md5": "1bb95cbbad31f743d7ac810b0573205f",
"sha256": "2f5a46cfe306f4727d3281ed9998386d97f7caa3c608f238f3b3eb9764320e72"
},
"downloads": -1,
"filename": "eazyml_xai_image-0.0.35.tar.gz",
"has_sig": false,
"md5_digest": "1bb95cbbad31f743d7ac810b0573205f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 44755312,
"upload_time": "2025-02-27T16:02:36",
"upload_time_iso_8601": "2025-02-27T16:02:36.648685Z",
"url": "https://files.pythonhosted.org/packages/54/68/67393fe6bd561ae816ffa52d0feffd4b1cae1c05c7e752f8e0940e699126/eazyml_xai_image-0.0.35.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-27 16:02:36",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "eazyml-xai-image"
}