ecolaf


Nameecolaf JSON
Version 0.1.3 PyPI version JSON
download
home_pagehttps://github.com/deregnaucourtlucas/ECOLAF
SummaryA toolkit python package to build an adaptive multimodal late fusion pipeline based on Dempster-Shafer Theory for semantic segmentation and classification tasks.
upload_time2024-12-03 14:36:24
maintainerNone
docs_urlNone
authorLucas Deregnaucourt
requires_pythonNone
licenseNone
keywords dempster-shafer theory deep learning multimodal semantic segmentation classification
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ECoLaF

This package offers a user-friendly toolkit to build an adaptive multimodal late fusion pipeline (*ECoLaF*) based on the Dempster-Shafer Theory from multiple single-modality neural networks.
The proposed pipeline can be used for semantic segmentation and classification tasks.

<!-- Mettre les équations et des exemples plus visuels pourrait pimper la description !!! -->

## INSTALLATION
To install the package, use the following command: `pip install ecolaf`.

## USAGE
Firstly, a single-modality neural network needs to be defined for each modality. Please make sure that each neural network has a *forward* method. If the dataset you are working with has *K* classes, please make sure that your models output *K+1* values to fit the Dempster-Shafer framework. 

Then you can build an *ECoLaF* pipeline as follows:   
`MyModel = ECOLAF(list_of_single_modality_networks, num_classes)`.

Given a list of multimodal images, the inference can be done as follows:   
`output = MyModel(list_of_images, **kwargs)`.

The optional arguments of the forward method are listed bellow:

```
output_unimodal (Boolean): returns the list of outputs for each model

output_conflict (Boolean): returns a conflict map of shape BxMxHxW

output_discounting_coef (Boolean): returns the discounting coefficients map of shape BxMxHxW

interpolation (Boolean): interpolates the output to the original image size

output_keyword (String): key to access to the output tensor if the model's output is a dictionary 
(for example, the deeplabV3_resnet50 model from torchvision requires output_keyword='out')

B: batch_size, M: number of modalities, H: images height, W: images width
```

An example is provided in `test/test_code.py`.

## CITATIONS

If you use ECoLaF, please cite the following work:

```
@InProceedings{deregnaucourt_2025_WACV,
    author    = {Deregnaucourt, Lucas and Laghmara, Hind and Lechervy, Alexis and Ainouz, Samia},
    title     = {A Conflict-guided Evidential Fusion for Multimodal Semantic Segmentation},
    booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
    month     = {February},
    year      = {2025},
}
```


# CHANGELOG

## Version 0.1.0 12.01.2024
Repository creation

## Version 0.1.1 12.03.2024
Minor changes

## Version 0.1.2 12.03.2024
Minor changes

## Version 0.1.3 12.03.2024
Minor changes

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/deregnaucourtlucas/ECOLAF",
    "name": "ecolaf",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "Dempster-Shafer Theory, Deep Learning, Multimodal, Semantic Segmentation, Classification",
    "author": "Lucas Deregnaucourt",
    "author_email": "lucas.deregnaucourt@insa-rouen.fr",
    "download_url": "https://files.pythonhosted.org/packages/3a/eb/6cb370c524fa3e2d8e1caf4edc53e7de4c43226bcb197c86df28e2f43503/ecolaf-0.1.3.tar.gz",
    "platform": null,
    "description": "# ECoLaF\n\nThis package offers a user-friendly toolkit to build an adaptive multimodal late fusion pipeline (*ECoLaF*) based on the Dempster-Shafer Theory from multiple single-modality neural networks.\nThe proposed pipeline can be used for semantic segmentation and classification tasks.\n\n<!-- Mettre les \u00e9quations et des exemples plus visuels pourrait pimper la description !!! -->\n\n## INSTALLATION\nTo install the package, use the following command: `pip install ecolaf`.\n\n## USAGE\nFirstly, a single-modality neural network needs to be defined for each modality. Please make sure that each neural network has a *forward* method. If the dataset you are working with has *K* classes, please make sure that your models output *K+1* values to fit the Dempster-Shafer framework. \n\nThen you can build an *ECoLaF* pipeline as follows:   \n`MyModel = ECOLAF(list_of_single_modality_networks, num_classes)`.\n\nGiven a list of multimodal images, the inference can be done as follows:   \n`output = MyModel(list_of_images, **kwargs)`.\n\nThe optional arguments of the forward method are listed bellow:\n\n```\noutput_unimodal (Boolean): returns the list of outputs for each model\n\noutput_conflict (Boolean): returns a conflict map of shape BxMxHxW\n\noutput_discounting_coef (Boolean): returns the discounting coefficients map of shape BxMxHxW\n\ninterpolation (Boolean): interpolates the output to the original image size\n\noutput_keyword (String): key to access to the output tensor if the model's output is a dictionary \n(for example, the deeplabV3_resnet50 model from torchvision requires output_keyword='out')\n\nB: batch_size, M: number of modalities, H: images height, W: images width\n```\n\nAn example is provided in `test/test_code.py`.\n\n## CITATIONS\n\nIf you use ECoLaF, please cite the following work:\n\n```\n@InProceedings{deregnaucourt_2025_WACV,\n    author    = {Deregnaucourt, Lucas and Laghmara, Hind and Lechervy, Alexis and Ainouz, Samia},\n    title     = {A Conflict-guided Evidential Fusion for Multimodal Semantic Segmentation},\n    booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},\n    month     = {February},\n    year      = {2025},\n}\n```\n\n\n# CHANGELOG\n\n## Version 0.1.0 12.01.2024\nRepository creation\n\n## Version 0.1.1 12.03.2024\nMinor changes\n\n## Version 0.1.2 12.03.2024\nMinor changes\n\n## Version 0.1.3 12.03.2024\nMinor changes\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A toolkit python package to build an adaptive multimodal late fusion pipeline based on Dempster-Shafer Theory for semantic segmentation and classification tasks.",
    "version": "0.1.3",
    "project_urls": {
        "Homepage": "https://github.com/deregnaucourtlucas/ECOLAF"
    },
    "split_keywords": [
        "dempster-shafer theory",
        " deep learning",
        " multimodal",
        " semantic segmentation",
        " classification"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "54cf35f82a9282034504a85cea7a7ff658f4b03801eaa421ee5dca94f3b530ff",
                "md5": "af61294a3de662207b94a926024af564",
                "sha256": "e04881c79d63f7c60af410676c8b8245625be1826d2ce63a2747191f3f27d3e8"
            },
            "downloads": -1,
            "filename": "ecolaf-0.1.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "af61294a3de662207b94a926024af564",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 7049,
            "upload_time": "2024-12-03T14:36:23",
            "upload_time_iso_8601": "2024-12-03T14:36:23.663952Z",
            "url": "https://files.pythonhosted.org/packages/54/cf/35f82a9282034504a85cea7a7ff658f4b03801eaa421ee5dca94f3b530ff/ecolaf-0.1.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3aeb6cb370c524fa3e2d8e1caf4edc53e7de4c43226bcb197c86df28e2f43503",
                "md5": "d3de386335f78d582400683421a9e352",
                "sha256": "10d1a2f28957ab9ec1d429b78165e1e138909cace20cd6fc3086f0864d4f5a82"
            },
            "downloads": -1,
            "filename": "ecolaf-0.1.3.tar.gz",
            "has_sig": false,
            "md5_digest": "d3de386335f78d582400683421a9e352",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 5977,
            "upload_time": "2024-12-03T14:36:24",
            "upload_time_iso_8601": "2024-12-03T14:36:24.792896Z",
            "url": "https://files.pythonhosted.org/packages/3a/eb/6cb370c524fa3e2d8e1caf4edc53e7de4c43226bcb197c86df28e2f43503/ecolaf-0.1.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-03 14:36:24",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "deregnaucourtlucas",
    "github_project": "ECOLAF",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "ecolaf"
}
        
Elapsed time: 2.52466s