# π Urecsys EDA Tool
Welcome to the Urecsys Exploratory Data Analysis (EDA) tools. This toolkit provides various features for analyzing and visualizing your datasets.
## Overview
EDA is a crucial step in the data analysis process that helps you:
- Summarize main characteristics of datasets
- Detect anomalies
- Uncover patterns
- Visualize data relationships
## Getting Started
1. Set up a virtual environment:
```bash
python -m venv .venv
source .venv/bin/activate
```
> **Tip**: You can also create a virtual environment in VS Code by pressing `Ctrl+Shift+P` (`β + Shift + P` on macOS), typing `Python: Create Environment`, and following the prompts.
2. Install dependencies using Poetry:
```bash
poetry install
```
3. Launch the EDA tool:
```bash
streamlit run 0_π_EDA.py
```
> **Tip**: You can type `streamlit run 0` and press Tab for auto-completion
4. Once launched, navigate to π Overview in the sidebar
5. Upload your pickle file to begin analysis
## Development
### Adding New EDA Features
New EDA tools should be added under the `eda/pages` directory following this naming convention:
```
<number>_<emoji>_<title>.py
```
Example: `1_π_overview.py`
This naming pattern ensures proper ordering and visual organization in the Streamlit sidebar.
To create a new EDA page, you can start by copying the `101_π_Template.py` file. This template provides a basic structure for your new page.
Replace `<number>`, `<emoji>`, and `<title>` with appropriate values for your new page. This will help maintain consistency and organization within the project.
Raw data
{
"_id": null,
"home_page": null,
"name": "eda-ts",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0.0,>=3.11",
"maintainer_email": null,
"keywords": "eda, time series, exploratory data analysis",
"author": "Hadar Sharvit",
"author_email": "hadar@urecsys.com",
"download_url": "https://files.pythonhosted.org/packages/8f/9f/71a14ec3e44e01ecb285a079feb4fd61593e730237bc7368891f593068e4/eda_ts-1.0.0.tar.gz",
"platform": null,
"description": "# \ud83d\udcd8 Urecsys EDA Tool\n\nWelcome to the Urecsys Exploratory Data Analysis (EDA) tools. This toolkit provides various features for analyzing and visualizing your datasets.\n\n## Overview\n\nEDA is a crucial step in the data analysis process that helps you:\n- Summarize main characteristics of datasets\n- Detect anomalies\n- Uncover patterns\n- Visualize data relationships\n## Getting Started\n\n1. Set up a virtual environment:\n```bash\npython -m venv .venv\nsource .venv/bin/activate \n```\n> **Tip**: You can also create a virtual environment in VS Code by pressing `Ctrl+Shift+P` (`\u2318 + Shift + P` on macOS), typing `Python: Create Environment`, and following the prompts.\n\n\n2. Install dependencies using Poetry:\n```bash\npoetry install\n```\n\n3. Launch the EDA tool:\n```bash\nstreamlit run 0_\ud83d\udcd8_EDA.py\n```\n> **Tip**: You can type `streamlit run 0` and press Tab for auto-completion\n\n4. Once launched, navigate to \ud83c\udfe0Overview in the sidebar\n\n5. Upload your pickle file to begin analysis\n\n\n## Development\n\n### Adding New EDA Features\n\nNew EDA tools should be added under the `eda/pages` directory following this naming convention:\n\n```\n<number>_<emoji>_<title>.py\n```\n\nExample: `1_\ud83d\udcca_overview.py`\n\nThis naming pattern ensures proper ordering and visual organization in the Streamlit sidebar.\n\nTo create a new EDA page, you can start by copying the `101_\ud83d\udcdd_Template.py` file. This template provides a basic structure for your new page.\n\nReplace `<number>`, `<emoji>`, and `<title>` with appropriate values for your new page. This will help maintain consistency and organization within the project.\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "An exploratory data analysys (EDA) tool for time series data",
"version": "1.0.0",
"project_urls": null,
"split_keywords": [
"eda",
" time series",
" exploratory data analysis"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "1267af9ea2227bbfc80aaeff62d363fe7d5fdfbf4973e8ea8e3bf9de11db037c",
"md5": "d665525065dcaeb8d4b51e6ff4955410",
"sha256": "163fb617bba0155b6cdcdf14abcceb3bc2d09913d49961861f1eb5623d36fbc1"
},
"downloads": -1,
"filename": "eda_ts-1.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d665525065dcaeb8d4b51e6ff4955410",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0.0,>=3.11",
"size": 12305,
"upload_time": "2025-02-09T14:08:44",
"upload_time_iso_8601": "2025-02-09T14:08:44.626876Z",
"url": "https://files.pythonhosted.org/packages/12/67/af9ea2227bbfc80aaeff62d363fe7d5fdfbf4973e8ea8e3bf9de11db037c/eda_ts-1.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "8f9f71a14ec3e44e01ecb285a079feb4fd61593e730237bc7368891f593068e4",
"md5": "12de75cccd94c175ce7507b9961fdd3b",
"sha256": "92f77b883cc0358744ae5dedaa17ba80999d572ddd35c291500a8bff1362dda0"
},
"downloads": -1,
"filename": "eda_ts-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "12de75cccd94c175ce7507b9961fdd3b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0.0,>=3.11",
"size": 9601,
"upload_time": "2025-02-09T14:08:45",
"upload_time_iso_8601": "2025-02-09T14:08:45.973830Z",
"url": "https://files.pythonhosted.org/packages/8f/9f/71a14ec3e44e01ecb285a079feb4fd61593e730237bc7368891f593068e4/eda_ts-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-09 14:08:45",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "eda-ts"
}