edc-model-to-dataframe


Nameedc-model-to-dataframe JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://github.com/clinicedc/edc-model-to-dataframe
SummaryExport EDC model data to pandas dataframe for clinicedc/edc projects
upload_time2025-01-31 17:41:29
maintainerNone
docs_urlNone
authorErik van Widenfelt
requires_python>=3.12
licenseGPL license, see LICENSE
keywords django edc pandas dataframe csv stata dta export clinicedc clinical trials
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            |pypi| |actions| |codecov| |downloads|

edc-model-to-dataframe
----------------------

``ModelToDataframe`` exports EDC subject data into a pandas dataframe. On export it will add ``subject_identifier`` and
visit tracking columns specific to the EDC. Also, by default, encrypted fields are not exported.

M2M columns are joined into a single field value delimited by comma.

Note: If you are just exporting raw tables, use `django_pandas <https://github.com/chrisdev/django-pandas>`__ ``read_frame``.


Pass a model name:

.. code-block:: python

    from django.apps import apps as django_apps
    from edc_model_to_dataframe import ModelToDataframe

    model = "meta_subject.followupexaminiation"
    m = ModelToDataframe(model)
    df = m.dataframe

Pass a queryset:

.. code-block:: python

    # using a queryset
    model_cls = django_apps.get_model("meta_subject.followupexaminiation")
    m = ModelToDataframe(model_cls.objects.all())
    df = m.dataframe


``read_frame_edc``:  like in `django_pandas <https://github.com/chrisdev/django-pandas>`__, there is a ``read_frame`` -like function which wraps ModelToDataframe


.. code-block:: python

    from edc_model_to_dataframe import read_frame_edc

    model_cls = django_apps.get_model(model)
    df = read_frame_edc(model_cls.objects.all())


.. |pypi| image:: https://img.shields.io/pypi/v/edc-model-to-dataframe.svg
    :target: https://pypi.python.org/pypi/edc-model-to-dataframe

.. |actions| image:: https://github.com/clinicedc/edc-model-to-dataframe/actions/workflows/build.yml/badge.svg
  :target: https://github.com/clinicedc/edc-model-to-dataframe/actions/workflows/build.yml

.. |codecov| image:: https://codecov.io/gh/clinicedc/edc-model-to-dataframe/branch/develop/graph/badge.svg
  :target: https://codecov.io/gh/clinicedc/edc-model-to-dataframe

.. |downloads| image:: https://pepy.tech/badge/edc-model-to-dataframe
   :target: https://pepy.tech/project/edc-model-to-dataframe

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/clinicedc/edc-model-to-dataframe",
    "name": "edc-model-to-dataframe",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.12",
    "maintainer_email": null,
    "keywords": "django Edc pandas dataframe CSV STATA DTA export, clinicedc, clinical trials",
    "author": "Erik van Widenfelt",
    "author_email": "ew2789@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/d3/ba/4b46848b3d93a5dff4cdab5eb0f0d10f1ffe7cc3d8293782039c0e3d71e6/edc_model_to_dataframe-1.0.0.tar.gz",
    "platform": null,
    "description": "|pypi| |actions| |codecov| |downloads|\n\nedc-model-to-dataframe\n----------------------\n\n``ModelToDataframe`` exports EDC subject data into a pandas dataframe. On export it will add ``subject_identifier`` and\nvisit tracking columns specific to the EDC. Also, by default, encrypted fields are not exported.\n\nM2M columns are joined into a single field value delimited by comma.\n\nNote: If you are just exporting raw tables, use `django_pandas <https://github.com/chrisdev/django-pandas>`__ ``read_frame``.\n\n\nPass a model name:\n\n.. code-block:: python\n\n    from django.apps import apps as django_apps\n    from edc_model_to_dataframe import ModelToDataframe\n\n    model = \"meta_subject.followupexaminiation\"\n    m = ModelToDataframe(model)\n    df = m.dataframe\n\nPass a queryset:\n\n.. code-block:: python\n\n    # using a queryset\n    model_cls = django_apps.get_model(\"meta_subject.followupexaminiation\")\n    m = ModelToDataframe(model_cls.objects.all())\n    df = m.dataframe\n\n\n``read_frame_edc``:  like in `django_pandas <https://github.com/chrisdev/django-pandas>`__, there is a ``read_frame`` -like function which wraps ModelToDataframe\n\n\n.. code-block:: python\n\n    from edc_model_to_dataframe import read_frame_edc\n\n    model_cls = django_apps.get_model(model)\n    df = read_frame_edc(model_cls.objects.all())\n\n\n.. |pypi| image:: https://img.shields.io/pypi/v/edc-model-to-dataframe.svg\n    :target: https://pypi.python.org/pypi/edc-model-to-dataframe\n\n.. |actions| image:: https://github.com/clinicedc/edc-model-to-dataframe/actions/workflows/build.yml/badge.svg\n  :target: https://github.com/clinicedc/edc-model-to-dataframe/actions/workflows/build.yml\n\n.. |codecov| image:: https://codecov.io/gh/clinicedc/edc-model-to-dataframe/branch/develop/graph/badge.svg\n  :target: https://codecov.io/gh/clinicedc/edc-model-to-dataframe\n\n.. |downloads| image:: https://pepy.tech/badge/edc-model-to-dataframe\n   :target: https://pepy.tech/project/edc-model-to-dataframe\n",
    "bugtrack_url": null,
    "license": "GPL license, see LICENSE",
    "summary": "Export EDC model data to pandas dataframe for clinicedc/edc projects",
    "version": "1.0.0",
    "project_urls": {
        "Homepage": "https://github.com/clinicedc/edc-model-to-dataframe"
    },
    "split_keywords": [
        "django edc pandas dataframe csv stata dta export",
        " clinicedc",
        " clinical trials"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "05bbe53bbd6d80395939de5309b382aad777cb2ecd646fd61459a1c57af7f686",
                "md5": "6577875d3ae097916e28b9cc703800b7",
                "sha256": "c01bbce1765a4a08ae3d31dfd22d78abf229066c180e5bf199094751c3f30b1a"
            },
            "downloads": -1,
            "filename": "edc_model_to_dataframe-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6577875d3ae097916e28b9cc703800b7",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.12",
            "size": 36679,
            "upload_time": "2025-01-31T17:41:27",
            "upload_time_iso_8601": "2025-01-31T17:41:27.371617Z",
            "url": "https://files.pythonhosted.org/packages/05/bb/e53bbd6d80395939de5309b382aad777cb2ecd646fd61459a1c57af7f686/edc_model_to_dataframe-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d3ba4b46848b3d93a5dff4cdab5eb0f0d10f1ffe7cc3d8293782039c0e3d71e6",
                "md5": "de2029f5a80539347aa6fbdfe958b151",
                "sha256": "9be3fbbdd5895dfc64b8f43a3ab339bf639841b7030993914fb46266345d5a51"
            },
            "downloads": -1,
            "filename": "edc_model_to_dataframe-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "de2029f5a80539347aa6fbdfe958b151",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.12",
            "size": 35925,
            "upload_time": "2025-01-31T17:41:29",
            "upload_time_iso_8601": "2025-01-31T17:41:29.485882Z",
            "url": "https://files.pythonhosted.org/packages/d3/ba/4b46848b3d93a5dff4cdab5eb0f0d10f1ffe7cc3d8293782039c0e3d71e6/edc_model_to_dataframe-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-31 17:41:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "clinicedc",
    "github_project": "edc-model-to-dataframe",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "lcname": "edc-model-to-dataframe"
}
        
Elapsed time: 1.55634s