Name | eelsmapper JSON |
Version |
0.2.5
JSON |
| download |
home_page | None |
Summary | Data-driven analysis pipeline for STEM-EELS spectra. See project at <a href="https://zhenyuan992.github.io/eelsmapper"> https://zhenyuan992.github.io/eelsmapper </a> |
upload_time | 2025-07-10 06:40:46 |
maintainer | None |
docs_url | None |
author | Yeo Zhen Yuan |
requires_python | >=3.8 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# [eelsmapper](https://zhenyuan992.github.io/eelsmapper/index.html)
<!-- <div align="center"><img src="logo/logo_eelsmapper.png" alt="Logo of eelsmapper" width="50%" /></div> -->
<div align="center"><img src="https://raw.githubusercontent.com/zhenyuan992/eelsmapper/refs/heads/main/logo/logo_eelsmapper.png" alt="Logo of eelsmapper" width="50%" /></div>
**[eelsmapper](https://zhenyuan992.github.io/eelsmapper/index.html)** is a data-driven pipeline for analyzing STEM-EELS spectra to perform high-resolution compositional mapping without relying on reference spectra. It integrates PCA, t-SNE (and/or UMAP), clustering, mutual information, and vector quantization to uncover subtle chemical differences and discover novel material phases. Installable with `pip install eelsmapper` from [pypi.org eelsmapper](https://pypi.org/search/?q=eelsmapper)
<!--  -->

---
## Purpose
STEM-EELS data is high-dimensional and noisy, making it challenging to interpret with traditional methods. **eelsmapper** offers a robust, modular pipeline for:
- Denoising spectra (PCA)
- Visualizing compositional patterns (t-SNE and/or UMAP)
- Clustering spectra (K-Means)
- Identifying correlated elemental regions (Mutual Information)
- Enhancing signal quality (Vector Quantization)
- Discovering new material phases without needing reference spectra
---
## Installation:
`pip install eelsmapper`
---
## Demo:
``` python
# assuming you have installed with !pip install eelsmapper
from eelsmapper.pipeline import run_pipeline
import numpy as np
data = np.load("specs.npz")["arr_0"]
data = data.reshape(-1,data.shape[-1])
run_pipeline( data )
```
## Notes:
This package is a python implementation of the following conference papers/talks:
### Data-Driven Analysis of STEM-EELS Spectra for High-Resolution Compositional Mapping
PDF found at https://www.scienceopen.com/hosted-document?doi=10.14293/APMC13-2025-0303
### Unsupervised Machine Learning for Phase Identification and Characterization of High-Resolution STEM EELS in Novel Battery Materials
PDF found at https://openreview.net/forum?id=dw8DFI2esQ
## How to cite:
Yeo ZY, Lai W, Lee JH, Balakrishnan D, Özyilmaz B, Duane Loh N. Data-driven analysis of STEM-EELS spectra for high-resolution compositional mapping. 13th Asia Pacific Microscopy Congress 2025 (APMC13). 2025; 303. doi:10.14293/apmc13-2025-0303
Yeo ZY, Lai W, Lee JH, Balakrishnan D, Özyilmaz B, Duane Loh N. Unsupervised machine learning for phase identification and characterization of high-resolution STEM EELS in novel battery materials. 2025. Available: https://openreview.net/pdf?id=dw8DFI2esQ
Raw data
{
"_id": null,
"home_page": null,
"name": "eelsmapper",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": null,
"author": "Yeo Zhen Yuan",
"author_email": "yeozy@nus.edu.sg",
"download_url": "https://files.pythonhosted.org/packages/7f/34/f23054c8faa05b7002242cf33f19bbf13846719bfcf1cad21b6f4e42a542/eelsmapper-0.2.5.tar.gz",
"platform": null,
"description": "# [eelsmapper](https://zhenyuan992.github.io/eelsmapper/index.html)\n\n<!-- <div align=\"center\"><img src=\"logo/logo_eelsmapper.png\" alt=\"Logo of eelsmapper\" width=\"50%\" /></div> -->\n\n<div align=\"center\"><img src=\"https://raw.githubusercontent.com/zhenyuan992/eelsmapper/refs/heads/main/logo/logo_eelsmapper.png\" alt=\"Logo of eelsmapper\" width=\"50%\" /></div>\n\n**[eelsmapper](https://zhenyuan992.github.io/eelsmapper/index.html)** is a data-driven pipeline for analyzing STEM-EELS spectra to perform high-resolution compositional mapping without relying on reference spectra. It integrates PCA, t-SNE (and/or UMAP), clustering, mutual information, and vector quantization to uncover subtle chemical differences and discover novel material phases. Installable with `pip install eelsmapper` from [pypi.org eelsmapper](https://pypi.org/search/?q=eelsmapper)\n\n<!--  -->\n\n\n\n---\n\n## Purpose\n\nSTEM-EELS data is high-dimensional and noisy, making it challenging to interpret with traditional methods. **eelsmapper** offers a robust, modular pipeline for:\n\n- Denoising spectra (PCA)\n- Visualizing compositional patterns (t-SNE and/or UMAP)\n- Clustering spectra (K-Means)\n- Identifying correlated elemental regions (Mutual Information)\n- Enhancing signal quality (Vector Quantization)\n- Discovering new material phases without needing reference spectra\n\n\n---\n\n## Installation:\n\n`pip install eelsmapper`\n\n---\n\n## Demo:\n\n``` python\n# assuming you have installed with !pip install eelsmapper\nfrom eelsmapper.pipeline import run_pipeline\nimport numpy as np\n\ndata = np.load(\"specs.npz\")[\"arr_0\"]\ndata = data.reshape(-1,data.shape[-1])\n\nrun_pipeline( data )\n```\n\n## Notes:\n\nThis package is a python implementation of the following conference papers/talks:\n\n### Data-Driven Analysis of STEM-EELS Spectra for High-Resolution Compositional Mapping\n\nPDF found at https://www.scienceopen.com/hosted-document?doi=10.14293/APMC13-2025-0303\n\n### Unsupervised Machine Learning for Phase Identification and Characterization of High-Resolution STEM EELS in Novel Battery Materials\n\nPDF found at https://openreview.net/forum?id=dw8DFI2esQ\n\n## How to cite:\n\n Yeo ZY, Lai W, Lee JH, Balakrishnan D, \u00d6zyilmaz B, Duane Loh N. Data-driven analysis of STEM-EELS spectra for high-resolution compositional mapping. 13th Asia Pacific Microscopy Congress 2025 (APMC13). 2025; 303. doi:10.14293/apmc13-2025-0303\n \n\n Yeo ZY, Lai W, Lee JH, Balakrishnan D, \u00d6zyilmaz B, Duane Loh N. Unsupervised machine learning for phase identification and characterization of high-resolution STEM EELS in novel battery materials. 2025. Available: https://openreview.net/pdf?id=dw8DFI2esQ\n \n",
"bugtrack_url": null,
"license": null,
"summary": "Data-driven analysis pipeline for STEM-EELS spectra. See project at <a href=\"https://zhenyuan992.github.io/eelsmapper\"> https://zhenyuan992.github.io/eelsmapper </a>",
"version": "0.2.5",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "aac6ebde7855f0fedfc4e6ba75a84d6af2f64e3334506b62dc766145fa3ab324",
"md5": "0ba658ad8ee41df49d82f0393340e9c0",
"sha256": "1be550c281bf222faa4fc77e2c31e2d3bfb0af123d3ca8adbae5034ae290797f"
},
"downloads": -1,
"filename": "eelsmapper-0.2.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "0ba658ad8ee41df49d82f0393340e9c0",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 5967,
"upload_time": "2025-07-10T06:40:41",
"upload_time_iso_8601": "2025-07-10T06:40:41.872903Z",
"url": "https://files.pythonhosted.org/packages/aa/c6/ebde7855f0fedfc4e6ba75a84d6af2f64e3334506b62dc766145fa3ab324/eelsmapper-0.2.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7f34f23054c8faa05b7002242cf33f19bbf13846719bfcf1cad21b6f4e42a542",
"md5": "be17f0117e35c7a8e777fe69db16af10",
"sha256": "16e0842e114325facac0f8d007ac17c3e3871c93119c77bda7d2149dde62b886"
},
"downloads": -1,
"filename": "eelsmapper-0.2.5.tar.gz",
"has_sig": false,
"md5_digest": "be17f0117e35c7a8e777fe69db16af10",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 5595,
"upload_time": "2025-07-10T06:40:46",
"upload_time_iso_8601": "2025-07-10T06:40:46.489260Z",
"url": "https://files.pythonhosted.org/packages/7f/34/f23054c8faa05b7002242cf33f19bbf13846719bfcf1cad21b6f4e42a542/eelsmapper-0.2.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-10 06:40:46",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "eelsmapper"
}