eensight


Nameeensight JSON
Version 1.0.2 PyPI version JSON
download
home_pagehttps://github.com/hebes-io/eensight
SummaryA library for measurement and verification of energy efficiency projects.
upload_time2023-01-21 17:41:29
maintainerSotiris Papadelis
docs_urlNone
author
requires_python>=3.7
licenseApache License, Version 2.0
keywords measurement verification pipelines
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ## The `eensight` tool for measurement and verification of energy efficiency improvements

The `eensight` Python package implements the measurement and verification (M&V) methodology that has been developed by the H2020 project [SENSEI - Smart Energy Services to Improve the Energy Efficiency of the European Building Stock](https://senseih2020.eu/). 

The online book *Rethinking Measurement and Verification of Energy Savings* (accessible [here](https://hebes-io.github.io/rethinking/index.html)) explains in detail both the methodology and its implementation.

## Installation

`eensight` can be installed by pip:

```bash
pip install eensight
```

## Usage

### 1. Through the command line

All the functionality in `eensight` is organized around data pipelines. Each pipeline consumes data and other artifacts (such as models) produced by a previous pipeline, and produces new data and artifacts for its successor pipelines.

There are four (4) pipelines in `eensight`. The names of the pipelines and the associations between pipelines and namespaces are summarized below:

|            	| train    	| test   	| apply   |
|------------	|----------	|----------	|---------|
| preprocess 	| ✔ 	| ✔ 	| ✔|
| predict    	| ✔ 	| ✔	| ✔|
| evaluate    	|          	| ✔  | ✔|
| adjust    	|          	|           | ✔|

The primary way of using `eensight` is through the command line. The first argument is always the name of the pipeline to run, such as:

```bash
eensight run predict --namespace train
```
The command

```bash
eensight run --help
```
prints the documentation for all the options that can be passed to the command line.

### 2. As a library

The pipelines of `eensight` are separate from the methods that implement them, so that the latter can be used directly:

```python
import pandas as pd

from eensight.methods.prediction.baseline import UsagePredictor
from eensight.methods.prediction.activity import estimate_activity

non_occ_features = ["temperature", "dew point temperature"]

activity = estimate_activity(
    X, 
    y, 
    non_occ_features=non_occ_features, 
    exog="temperature",
    assume_hurdle=False,

)

X_act = pd.concat([X, activity.to_frame("activity")], axis=1)
model = UsagePredictor(skip_calendar=True).fit(X_act, y)
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/hebes-io/eensight",
    "name": "eensight",
    "maintainer": "Sotiris Papadelis",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "spapadel@gmail.com",
    "keywords": "measurement,verification,pipelines",
    "author": "",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/cd/44/f9702664f3f4bc35b4e8c25d92fadb2da09fafb336f1434b81fa974127c0/eensight-1.0.2.tar.gz",
    "platform": null,
    "description": "## The `eensight` tool for measurement and verification of energy efficiency improvements\r\n\r\nThe `eensight` Python package implements the measurement and verification (M&V) methodology that has been developed by the H2020 project [SENSEI - Smart Energy Services to Improve the Energy Efficiency of the European Building Stock](https://senseih2020.eu/). \r\n\r\nThe online book *Rethinking Measurement and Verification of Energy Savings* (accessible [here](https://hebes-io.github.io/rethinking/index.html)) explains in detail both the methodology and its implementation.\r\n\r\n## Installation\r\n\r\n`eensight` can be installed by pip:\r\n\r\n```bash\r\npip install eensight\r\n```\r\n\r\n## Usage\r\n\r\n### 1. Through the command line\r\n\r\nAll the functionality in `eensight` is organized around data pipelines. Each pipeline consumes data and other artifacts (such as models) produced by a previous pipeline, and produces new data and artifacts for its successor pipelines.\r\n\r\nThere are four (4) pipelines in `eensight`. The names of the pipelines and the associations between pipelines and namespaces are summarized below:\r\n\r\n|            \t| train    \t| test   \t| apply   |\r\n|------------\t|----------\t|----------\t|---------|\r\n| preprocess \t| ✔ \t| ✔ \t| ✔|\r\n| predict    \t| ✔ \t| ✔\t| ✔|\r\n| evaluate    \t|          \t| ✔  | ✔|\r\n| adjust    \t|          \t|           | ✔|\r\n\r\nThe primary way of using `eensight` is through the command line. The first argument is always the name of the pipeline to run, such as:\r\n\r\n```bash\r\neensight run predict --namespace train\r\n```\r\nThe command\r\n\r\n```bash\r\neensight run --help\r\n```\r\nprints the documentation for all the options that can be passed to the command line.\r\n\r\n### 2. As a library\r\n\r\nThe pipelines of `eensight` are separate from the methods that implement them, so that the latter can be used directly:\r\n\r\n```python\r\nimport pandas as pd\r\n\r\nfrom eensight.methods.prediction.baseline import UsagePredictor\r\nfrom eensight.methods.prediction.activity import estimate_activity\r\n\r\nnon_occ_features = [\"temperature\", \"dew point temperature\"]\r\n\r\nactivity = estimate_activity(\r\n    X, \r\n    y, \r\n    non_occ_features=non_occ_features, \r\n    exog=\"temperature\",\r\n    assume_hurdle=False,\r\n\r\n)\r\n\r\nX_act = pd.concat([X, activity.to_frame(\"activity\")], axis=1)\r\nmodel = UsagePredictor(skip_calendar=True).fit(X_act, y)\r\n```\r\n\r\n",
    "bugtrack_url": null,
    "license": "Apache License, Version 2.0",
    "summary": "A library for measurement and verification of energy efficiency projects.",
    "version": "1.0.2",
    "split_keywords": [
        "measurement",
        "verification",
        "pipelines"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6b0c76e30a1e585da56df6f1946d95d211af13ddbdcf90dcdddded0e535009a0",
                "md5": "8c7fd97f1fd3260acaa51a9f92353fd1",
                "sha256": "32b9b77e1a992b36514d1cbe2dd5d64e4a4634409da4990964a173fc24f59239"
            },
            "downloads": -1,
            "filename": "eensight-1.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8c7fd97f1fd3260acaa51a9f92353fd1",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 62275,
            "upload_time": "2023-01-21T17:41:26",
            "upload_time_iso_8601": "2023-01-21T17:41:26.674345Z",
            "url": "https://files.pythonhosted.org/packages/6b/0c/76e30a1e585da56df6f1946d95d211af13ddbdcf90dcdddded0e535009a0/eensight-1.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cd44f9702664f3f4bc35b4e8c25d92fadb2da09fafb336f1434b81fa974127c0",
                "md5": "26a49ddbe651885f4c2bbc8ed5781d60",
                "sha256": "a05cf13d73de2ab70608d889ca1e6a73d3dfca019aec9c9f95b1624f2c1a2cbd"
            },
            "downloads": -1,
            "filename": "eensight-1.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "26a49ddbe651885f4c2bbc8ed5781d60",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 67028,
            "upload_time": "2023-01-21T17:41:29",
            "upload_time_iso_8601": "2023-01-21T17:41:29.589801Z",
            "url": "https://files.pythonhosted.org/packages/cd/44/f9702664f3f4bc35b4e8c25d92fadb2da09fafb336f1434b81fa974127c0/eensight-1.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-21 17:41:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "hebes-io",
    "github_project": "eensight",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "eensight"
}
        
Elapsed time: 0.08744s