# SWAHILI CLEANER
## _Best Swahili Processing Library_
Swahili Cleaner is the swahili version Text Processing library for Natural Language Processing
- ✨Magic ✨
## Features
- It can clean text by removing emojs
- Remove Unicode characters
- Cleaning the urls
- Cleaning the html elements
- remove parentheses
- remove numbers and keep text/alphabet only
- set in lowercase
- Removing stop words both Swahili and English
- Cleaning the whitespaces
- Remove non-alphanumeric characters
- Remove non-alphabetic characters
- Remove short words
## Installation
```sh
!pip install eganetswahilicleaner
```
## How to use
```sh
from eganetswahilicleaner.clean import clean_text
train['text']=train['text'].apply(clean_text)
test['text']=test['text'].apply(clean_text)
```
_Where train['text'] this is a column in a pandas dataframe_
Raw data
{
"_id": null,
"home_page": "",
"name": "eganetswahilicleaner",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "swahili_text_cleaner",
"author": "Shadrack Kajigili",
"author_email": "shadrackkajigili4@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/36/77/cde7307829059dbcd440d324023addcc7f116aec83e92f304d08ad5dd2c6/eganetswahilicleaner-0.1.0.tar.gz",
"platform": null,
"description": "# SWAHILI CLEANER\n## _Best Swahili Processing Library_\n\n\n\nSwahili Cleaner is the swahili version Text Processing library for Natural Language Processing\n\n- \u2728Magic \u2728\n\n## Features\n\n- It can clean text by removing emojs\n- Remove Unicode characters\n- Cleaning the urls\n- Cleaning the html elements\n- remove parentheses\n- remove numbers and keep text/alphabet only\n- set in lowercase\n- Removing stop words both Swahili and English\n- Cleaning the whitespaces\n- Remove non-alphanumeric characters\n- Remove non-alphabetic characters\n- Remove short words\n\n\n\n\n## Installation\n\n\n\n```sh\n!pip install eganetswahilicleaner\n```\n\n\n## How to use\n\n```sh\nfrom eganetswahilicleaner.clean import clean_text\ntrain['text']=train['text'].apply(clean_text)\ntest['text']=test['text'].apply(clean_text)\n\n```\n_Where train['text'] this is a column in a pandas dataframe_\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "SWAHILI TEXT CLEANING LIBRARY FOR NATURAL LANGUAGE PROCESSING",
"version": "0.1.0",
"project_urls": null,
"split_keywords": [
"swahili_text_cleaner"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3677cde7307829059dbcd440d324023addcc7f116aec83e92f304d08ad5dd2c6",
"md5": "e97ea17873c0b2a5864ac8700436a82e",
"sha256": "2d25eeeb6f8e8fee0ef73cc18c78aa6c76e90fbde91f6b4ae27b219542e31c7c"
},
"downloads": -1,
"filename": "eganetswahilicleaner-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "e97ea17873c0b2a5864ac8700436a82e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 4973,
"upload_time": "2023-08-19T15:42:04",
"upload_time_iso_8601": "2023-08-19T15:42:04.352045Z",
"url": "https://files.pythonhosted.org/packages/36/77/cde7307829059dbcd440d324023addcc7f116aec83e92f304d08ad5dd2c6/eganetswahilicleaner-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-08-19 15:42:04",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "eganetswahilicleaner"
}