Name | eh-evalml JSON |
Version |
0.0.0
JSON |
| download |
home_page | None |
Summary | an AutoML library that builds, optimizes, and evaluates machine learning pipelines using domain-specific objective functions |
upload_time | 2024-12-23 12:28:30 |
maintainer | None |
docs_url | None |
author | None |
requires_python | <4,>=3.9 |
license | BSD-3-Clause |
keywords |
data science
machine learning
optimization
automl
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
<p align="center">
<img width=50% src="https://alteryx-oss-web-images.s3.amazonaws.com/evalml_horizontal.svg" alt="EvalML" />
</p>
<p align="center">
<a href="https://github.com/alteryx/woodwork/actions?query=branch%3Amain+workflow%3ATests" target="_blank">
<img src="https://github.com/alteryx/woodwork/workflows/Tests/badge.svg?branch=main" alt="Tests" />
</a>
<a href="https://codecov.io/gh/alteryx/evalml">
<img src="https://codecov.io/gh/alteryx/evalml/branch/main/graph/badge.svg?token=JDc0Ib7kYL"/>
</a>
<a href="https://evalml.alteryx.com/en/latest/?badge=stable" target="_blank">
<img src="https://readthedocs.com/projects/feature-labs-inc-evalml/badge/?version=stable" alt="Documentation Status" />
</a>
<a href="https://badge.fury.io/py/evalml" target="_blank">
<img src="https://badge.fury.io/py/evalml.svg?maxAge=2592000" alt="PyPI Version" />
</a>
<a href="https://anaconda.org/conda-forge/evalml" target="_blank">
<img src="https://anaconda.org/conda-forge/evalml/badges/version.svg" alt="Anaconda Version" />
</a>
<a href="https://pepy.tech/project/evalml" target="_blank">
<img src="https://pepy.tech/badge/evalml/month" alt="PyPI Downloads" />
</a>
</p>
<hr>
EvalML is an AutoML library which builds, optimizes, and evaluates machine learning pipelines using domain-specific objective functions.
**Key Functionality**
* **Automation** - Makes machine learning easier. Avoid training and tuning models by hand. Includes data quality checks, cross-validation and more.
* **Data Checks** - Catches and warns of problems with your data and problem setup before modeling.
* **End-to-end** - Constructs and optimizes pipelines that include state-of-the-art preprocessing, feature engineering, feature selection, and a variety of modeling techniques.
* **Model Understanding** - Provides tools to understand and introspect on models, to learn how they'll behave in your problem domain.
* **Domain-specific** - Includes repository of domain-specific objective functions and an interface to define your own.
## Installation
Install from [PyPI](https://pypi.org/project/evalml/):
```bash
pip install evalml
```
or from the conda-forge channel on [conda](https://anaconda.org/conda-forge/evalml):
```bash
conda install -c conda-forge evalml
```
### Add-ons
**Update checker** - Receive automatic notifications of new Woodwork releases
PyPI:
```bash
pip install "evalml[updater]"
```
Conda:
```
conda install -c conda-forge alteryx-open-src-update-checker
```
## Start
#### Load and split example data
```python
import evalml
X, y = evalml.demos.load_breast_cancer()
X_train, X_test, y_train, y_test = evalml.preprocessing.split_data(X, y, problem_type='binary')
```
#### Run AutoML
```python
from evalml.automl import AutoMLSearch
automl = AutoMLSearch(X_train=X_train, y_train=y_train, problem_type='binary')
automl.search()
```
#### View pipeline rankings
```python
automl.rankings
```
#### Get best pipeline and predict on new data
```python
pipeline = automl.best_pipeline
pipeline.predict(X_test)
```
## Next Steps
Read more about EvalML on our [documentation page](https://evalml.alteryx.com/):
* [Installation](https://evalml.alteryx.com/en/stable/install.html) and [getting started](https://evalml.alteryx.com/en/stable/start.html).
* [Tutorials](https://evalml.alteryx.com/en/stable/tutorials.html) on how to use EvalML.
* [User guide](https://evalml.alteryx.com/en/stable/user_guide.html) which describes EvalML's features.
* Full [API reference](https://evalml.alteryx.com/en/stable/api_reference.html)
## Support
The EvalML community is happy to provide support to users of EvalML. Project support can be found in four places depending on the type of question:
1. For usage questions, use [Stack Overflow](https://stackoverflow.com/questions/tagged/evalml) with the `evalml` tag.
2. For bugs, issues, or feature requests start a [Github issue](https://github.com/alteryx/evalml/issues).
3. For discussion regarding development on the core library, use [Slack](https://join.slack.com/t/alteryx-oss/shared_invite/zt-182tyvuxv-NzIn6eiCEf8TBziuKp0bNA).
4. For everything else, the core developers can be reached by email at open_source_support@alteryx.com
## Built at Alteryx
**EvalML** is an open source project built by [Alteryx](https://www.alteryx.com). To see the other open source projects we’re working on visit [Alteryx Open Source](https://www.alteryx.com/open-source). If building impactful data science pipelines is important to you or your business, please get in touch.
<p align="center">
<a href="https://www.alteryx.com/open-source">
<img src="https://alteryx-oss-web-images.s3.amazonaws.com/OpenSource_Logo-01.png" alt="Alteryx Open Source" width="800"/>
</a>
</p>
Raw data
{
"_id": null,
"home_page": null,
"name": "eh-evalml",
"maintainer": null,
"docs_url": null,
"requires_python": "<4,>=3.9",
"maintainer_email": "\"Alteryx, Inc.\" <open_source_support@alteryx.com>",
"keywords": "data science, machine learning, optimization, automl",
"author": null,
"author_email": "\"Alteryx, Inc.\" <open_source_support@alteryx.com>",
"download_url": "https://files.pythonhosted.org/packages/51/b3/37e00be1d46ad96da9b146b16ef4bfaa784e9babb7ee6f1480ab6045b400/eh_evalml-0.0.0.tar.gz",
"platform": null,
"description": "<p align=\"center\">\n<img width=50% src=\"https://alteryx-oss-web-images.s3.amazonaws.com/evalml_horizontal.svg\" alt=\"EvalML\" />\n</p>\n\n<p align=\"center\">\n <a href=\"https://github.com/alteryx/woodwork/actions?query=branch%3Amain+workflow%3ATests\" target=\"_blank\">\n <img src=\"https://github.com/alteryx/woodwork/workflows/Tests/badge.svg?branch=main\" alt=\"Tests\" />\n </a>\n <a href=\"https://codecov.io/gh/alteryx/evalml\">\n <img src=\"https://codecov.io/gh/alteryx/evalml/branch/main/graph/badge.svg?token=JDc0Ib7kYL\"/>\n </a>\n <a href=\"https://evalml.alteryx.com/en/latest/?badge=stable\" target=\"_blank\">\n <img src=\"https://readthedocs.com/projects/feature-labs-inc-evalml/badge/?version=stable\" alt=\"Documentation Status\" />\n </a>\n <a href=\"https://badge.fury.io/py/evalml\" target=\"_blank\">\n <img src=\"https://badge.fury.io/py/evalml.svg?maxAge=2592000\" alt=\"PyPI Version\" />\n </a>\n <a href=\"https://anaconda.org/conda-forge/evalml\" target=\"_blank\">\n <img src=\"https://anaconda.org/conda-forge/evalml/badges/version.svg\" alt=\"Anaconda Version\" />\n </a>\n <a href=\"https://pepy.tech/project/evalml\" target=\"_blank\">\n <img src=\"https://pepy.tech/badge/evalml/month\" alt=\"PyPI Downloads\" />\n </a>\n</p>\n<hr>\n\nEvalML is an AutoML library which builds, optimizes, and evaluates machine learning pipelines using domain-specific objective functions.\n\n**Key Functionality**\n\n* **Automation** - Makes machine learning easier. Avoid training and tuning models by hand. Includes data quality checks, cross-validation and more.\n* **Data Checks** - Catches and warns of problems with your data and problem setup before modeling.\n* **End-to-end** - Constructs and optimizes pipelines that include state-of-the-art preprocessing, feature engineering, feature selection, and a variety of modeling techniques.\n* **Model Understanding** - Provides tools to understand and introspect on models, to learn how they'll behave in your problem domain.\n* **Domain-specific** - Includes repository of domain-specific objective functions and an interface to define your own.\n\n## Installation \n\nInstall from [PyPI](https://pypi.org/project/evalml/):\n\n```bash\npip install evalml\n```\n\nor from the conda-forge channel on [conda](https://anaconda.org/conda-forge/evalml):\n\n```bash\nconda install -c conda-forge evalml\n```\n\n### Add-ons\n**Update checker** - Receive automatic notifications of new Woodwork releases\n\nPyPI:\n\n```bash\npip install \"evalml[updater]\"\n```\nConda:\n```\nconda install -c conda-forge alteryx-open-src-update-checker\n```\n\n## Start\n\n#### Load and split example data \n```python\nimport evalml\nX, y = evalml.demos.load_breast_cancer()\nX_train, X_test, y_train, y_test = evalml.preprocessing.split_data(X, y, problem_type='binary')\n```\n\n#### Run AutoML\n```python\nfrom evalml.automl import AutoMLSearch\nautoml = AutoMLSearch(X_train=X_train, y_train=y_train, problem_type='binary')\nautoml.search()\n```\n\n#### View pipeline rankings\n```python\nautoml.rankings\n```\n\n#### Get best pipeline and predict on new data\n```python\npipeline = automl.best_pipeline\npipeline.predict(X_test)\n```\n\n## Next Steps\n\nRead more about EvalML on our [documentation page](https://evalml.alteryx.com/):\n\n* [Installation](https://evalml.alteryx.com/en/stable/install.html) and [getting started](https://evalml.alteryx.com/en/stable/start.html).\n* [Tutorials](https://evalml.alteryx.com/en/stable/tutorials.html) on how to use EvalML.\n* [User guide](https://evalml.alteryx.com/en/stable/user_guide.html) which describes EvalML's features.\n* Full [API reference](https://evalml.alteryx.com/en/stable/api_reference.html)\n\n## Support\n\nThe EvalML community is happy to provide support to users of EvalML. Project support can be found in four places depending on the type of question:\n1. For usage questions, use [Stack Overflow](https://stackoverflow.com/questions/tagged/evalml) with the `evalml` tag.\n2. For bugs, issues, or feature requests start a [Github issue](https://github.com/alteryx/evalml/issues).\n3. For discussion regarding development on the core library, use [Slack](https://join.slack.com/t/alteryx-oss/shared_invite/zt-182tyvuxv-NzIn6eiCEf8TBziuKp0bNA).\n4. For everything else, the core developers can be reached by email at open_source_support@alteryx.com\n\n## Built at Alteryx\n\n**EvalML** is an open source project built by [Alteryx](https://www.alteryx.com). To see the other open source projects we\u2019re working on visit [Alteryx Open Source](https://www.alteryx.com/open-source). If building impactful data science pipelines is important to you or your business, please get in touch.\n\n<p align=\"center\">\n <a href=\"https://www.alteryx.com/open-source\">\n <img src=\"https://alteryx-oss-web-images.s3.amazonaws.com/OpenSource_Logo-01.png\" alt=\"Alteryx Open Source\" width=\"800\"/>\n </a>\n</p>\n",
"bugtrack_url": null,
"license": "BSD-3-Clause",
"summary": "an AutoML library that builds, optimizes, and evaluates machine learning pipelines using domain-specific objective functions",
"version": "0.0.0",
"project_urls": {
"Changes": "https://evalml.alteryx.com/en/latest/release_notes.html",
"Chat": "https://join.slack.com/t/alteryx-oss/shared_invite/zt-182tyvuxv-NzIn6eiCEf8TBziuKp0bNA",
"Documentation": "https://evalml.alteryx.com",
"Issue Tracker": "https://github.com/alteryx/evalml/issues",
"Source Code": "https://github.com/alteryx/evalml/",
"Twitter": "https://twitter.com/alteryxoss"
},
"split_keywords": [
"data science",
" machine learning",
" optimization",
" automl"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "d989bce2b4841f0f22c1a03192a87a3940cd50b4222b2c873a05e952bb897b48",
"md5": "5fea7bd246576f9a085b810baf8744da",
"sha256": "b539f19c1c48a6c66babf5b78ee697431824ffd82bf0cfe2e3d5a14287c4feb5"
},
"downloads": -1,
"filename": "eh_evalml-0.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5fea7bd246576f9a085b810baf8744da",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4,>=3.9",
"size": 6581317,
"upload_time": "2024-12-23T12:28:26",
"upload_time_iso_8601": "2024-12-23T12:28:26.328438Z",
"url": "https://files.pythonhosted.org/packages/d9/89/bce2b4841f0f22c1a03192a87a3940cd50b4222b2c873a05e952bb897b48/eh_evalml-0.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "51b337e00be1d46ad96da9b146b16ef4bfaa784e9babb7ee6f1480ab6045b400",
"md5": "3a878a29788d31a998670a069a52d05d",
"sha256": "802911943abdf8383be77bad27fe8792872a5624255c5bd63bd651db1051a902"
},
"downloads": -1,
"filename": "eh_evalml-0.0.0.tar.gz",
"has_sig": false,
"md5_digest": "3a878a29788d31a998670a069a52d05d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4,>=3.9",
"size": 6346136,
"upload_time": "2024-12-23T12:28:30",
"upload_time_iso_8601": "2024-12-23T12:28:30.287502Z",
"url": "https://files.pythonhosted.org/packages/51/b3/37e00be1d46ad96da9b146b16ef4bfaa784e9babb7ee6f1480ab6045b400/eh_evalml-0.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-23 12:28:30",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "alteryx",
"github_project": "evalml",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "eh-evalml"
}