# README
# TabNet : Attentive Interpretable Tabular Learning
* this is maintained fork version of [dreamquark-ai/tabnet](https://github.com/dreamquark-ai/tabnet) with some changes and improvements.
* it uses pytorch metrics instead of numpy metrics, and also enhanced predictions & evaluation for GPU CUDA enhancement.
* expect more changes in the future.
* for the record and license policy assume everything is changed.
* **thanks & credits to dreamquark-ai team for the implementation and research.**
This is a pyTorch implementation of Tabnet (Arik, S. O., & Pfister, T. (2019). TabNet: Attentive Interpretable Tabular Learning. arXiv preprint arXiv:1908.07442.) https://arxiv.org/pdf/1908.07442.pdf. Please note that some different choices have been made overtime to improve the library which can differ from the orginal paper.
Raw data
{
"_id": null,
"home_page": null,
"name": "eh-pytorch-tabnet",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "neural-networks, pytorch, tabnet",
"author": null,
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/09/90/0c267682ad893789e87ed21187bdb9e258cdeb42c866b44404ff06a35ef5/eh_pytorch_tabnet-4.4.0.tar.gz",
"platform": null,
"description": "# README\n\n# TabNet : Attentive Interpretable Tabular Learning\n\n\n* this is maintained fork version of [dreamquark-ai/tabnet](https://github.com/dreamquark-ai/tabnet) with some changes and improvements.\n\n* it uses pytorch metrics instead of numpy metrics, and also enhanced predictions & evaluation for GPU CUDA enhancement.\n\n* expect more changes in the future.\n\n* for the record and license policy assume everything is changed.\n\n* **thanks & credits to dreamquark-ai team for the implementation and research.**\n\nThis is a pyTorch implementation of Tabnet (Arik, S. O., & Pfister, T. (2019). TabNet: Attentive Interpretable Tabular Learning. arXiv preprint arXiv:1908.07442.) https://arxiv.org/pdf/1908.07442.pdf. Please note that some different choices have been made overtime to improve the library which can differ from the orginal paper.\n",
"bugtrack_url": null,
"license": null,
"summary": "PyTorch implementation of TabNet",
"version": "4.4.0",
"project_urls": null,
"split_keywords": [
"neural-networks",
" pytorch",
" tabnet"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "457827902ca56cbc0b5508a8d85d7427effbc532a78ac5568c849602c43d88dd",
"md5": "646ca640eba73a95f8cde243750d7b30",
"sha256": "4c778d3c5a8eebb0ef4060a16b4c651ed130b8386e43db53c2e29ffc15679004"
},
"downloads": -1,
"filename": "eh_pytorch_tabnet-4.4.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "646ca640eba73a95f8cde243750d7b30",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 42076,
"upload_time": "2025-01-26T15:38:45",
"upload_time_iso_8601": "2025-01-26T15:38:45.335698Z",
"url": "https://files.pythonhosted.org/packages/45/78/27902ca56cbc0b5508a8d85d7427effbc532a78ac5568c849602c43d88dd/eh_pytorch_tabnet-4.4.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "09900c267682ad893789e87ed21187bdb9e258cdeb42c866b44404ff06a35ef5",
"md5": "4c057ac1fe6c008ea740052a179ac935",
"sha256": "46d85a876ff389d3e7ba270ed3eb0134c376a707a3500a5617dc1d305ce6b864"
},
"downloads": -1,
"filename": "eh_pytorch_tabnet-4.4.0.tar.gz",
"has_sig": false,
"md5_digest": "4c057ac1fe6c008ea740052a179ac935",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 36088,
"upload_time": "2025-01-26T15:38:46",
"upload_time_iso_8601": "2025-01-26T15:38:46.631954Z",
"url": "https://files.pythonhosted.org/packages/09/90/0c267682ad893789e87ed21187bdb9e258cdeb42c866b44404ff06a35ef5/eh_pytorch_tabnet-4.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-26 15:38:46",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "eh-pytorch-tabnet"
}