# π About `eigenfind`
**`eigenfind`** is a lightweight Python library that allows you to compute **eigenvectors from known eigenvalues** of a square matrix β a task commonly needed in theoretical mathematics, linear algebra education, and symbolic or numerical analysis.
While most libraries like NumPy and SciPy compute eigenvalues and eigenvectors together, `eigenfind` fills a specific niche: solving the **eigenvalue problem in reverse** β finding eigenvectors **when you already know one or more eigenvalues**.
This is achieved by solving the homogeneous linear system:
$$
(A - \lambda I)\mathbf{v} = 0
$$
β¦which defines the eigenspace for a given eigenvalue `Ξ»` of matrix `A`.
---
## β
Key Features
* π Find eigenvectors corresponding to a **given eigenvalue**
* π Works with both **numeric** (NumPy/SciPy) and **symbolic** (SymPy) matrices
* π Educational use: ideal for students, educators, and math enthusiasts
* π§ Supports defective matrices (partial functionality)
* π§ͺ Easy to test and integrate into other math tools
---
## π§ Use Cases
* Teaching or learning linear algebra
* Verifying results from numerical solvers
* Debugging or inspecting eigenvalue computations
* Symbolic math derivations
* Building introspection tools for PCA or matrix decompositions
Raw data
{
"_id": null,
"home_page": null,
"name": "eigenfind",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "eigenvectors, eigenvalues, linear algebra, math, numpy, scipy",
"author": null,
"author_email": "Aleks Mashanski <maszanski@yahoo.com>",
"download_url": "https://files.pythonhosted.org/packages/a6/89/adc68ca3aa5b4a3302f9178f8f5e5837d8980b1db3c3ae6a6bef30733910/eigenfind-0.1.0.tar.gz",
"platform": null,
"description": "# \ud83d\udccc About `eigenfind`\n\n**`eigenfind`** is a lightweight Python library that allows you to compute **eigenvectors from known eigenvalues** of a square matrix \u2014 a task commonly needed in theoretical mathematics, linear algebra education, and symbolic or numerical analysis.\n\nWhile most libraries like NumPy and SciPy compute eigenvalues and eigenvectors together, `eigenfind` fills a specific niche: solving the **eigenvalue problem in reverse** \u2014 finding eigenvectors **when you already know one or more eigenvalues**.\n\nThis is achieved by solving the homogeneous linear system:\n\n$$\n(A - \\lambda I)\\mathbf{v} = 0\n$$\n\n\u2026which defines the eigenspace for a given eigenvalue `\u03bb` of matrix `A`.\n\n---\n\n## \u2705 Key Features\n\n* \ud83d\udd0d Find eigenvectors corresponding to a **given eigenvalue**\n* \ud83d\udcd0 Works with both **numeric** (NumPy/SciPy) and **symbolic** (SymPy) matrices\n* \ud83d\udcda Educational use: ideal for students, educators, and math enthusiasts\n* \ud83e\udde0 Supports defective matrices (partial functionality)\n* \ud83e\uddea Easy to test and integrate into other math tools\n\n---\n\n## \ud83d\udea7 Use Cases\n\n* Teaching or learning linear algebra\n* Verifying results from numerical solvers\n* Debugging or inspecting eigenvalue computations\n* Symbolic math derivations\n* Building introspection tools for PCA or matrix decompositions\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A Python library to find eigenvectors by known eigenvalues.",
"version": "0.1.0",
"project_urls": {
"Documentation": "https://github.com/metroproxyn/eigenfind/blob/master/README.md",
"Homepage": "https://github.com/metroproxyn/eigenfind",
"Source": "https://github.com/yourusername/eigenfind"
},
"split_keywords": [
"eigenvectors",
" eigenvalues",
" linear algebra",
" math",
" numpy",
" scipy"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "37d51726711f3e477c171dfcf3047023742521ee72139318ba108a8fffc830db",
"md5": "84a6fd412f3c96eb0200fc51c697bc4c",
"sha256": "81d9b0496de2931b5bc536a401d6f98ca4386a125dcc9ea6e53e0deaf0b76be7"
},
"downloads": -1,
"filename": "eigenfind-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "84a6fd412f3c96eb0200fc51c697bc4c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 4448,
"upload_time": "2025-08-22T10:11:04",
"upload_time_iso_8601": "2025-08-22T10:11:04.063150Z",
"url": "https://files.pythonhosted.org/packages/37/d5/1726711f3e477c171dfcf3047023742521ee72139318ba108a8fffc830db/eigenfind-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a689adc68ca3aa5b4a3302f9178f8f5e5837d8980b1db3c3ae6a6bef30733910",
"md5": "5810f283e78e463c2f789f10b1465665",
"sha256": "dd13f7438659dc7bd42ada622c563261ddb2b30a88d18b046d1cdedefeb39382"
},
"downloads": -1,
"filename": "eigenfind-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "5810f283e78e463c2f789f10b1465665",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 3732,
"upload_time": "2025-08-22T10:11:05",
"upload_time_iso_8601": "2025-08-22T10:11:05.073071Z",
"url": "https://files.pythonhosted.org/packages/a6/89/adc68ca3aa5b4a3302f9178f8f5e5837d8980b1db3c3ae6a6bef30733910/eigenfind-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-22 10:11:05",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "metroproxyn",
"github_project": "eigenfind",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "eigenfind"
}