eigenfind


Nameeigenfind JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryA Python library to find eigenvectors by known eigenvalues.
upload_time2025-08-22 10:11:05
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMIT
keywords eigenvectors eigenvalues linear algebra math numpy scipy
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # πŸ“Œ About `eigenfind`

**`eigenfind`** is a lightweight Python library that allows you to compute **eigenvectors from known eigenvalues** of a square matrix β€” a task commonly needed in theoretical mathematics, linear algebra education, and symbolic or numerical analysis.

While most libraries like NumPy and SciPy compute eigenvalues and eigenvectors together, `eigenfind` fills a specific niche: solving the **eigenvalue problem in reverse** β€” finding eigenvectors **when you already know one or more eigenvalues**.

This is achieved by solving the homogeneous linear system:

$$
(A - \lambda I)\mathbf{v} = 0
$$

…which defines the eigenspace for a given eigenvalue `Ξ»` of matrix `A`.

---

## βœ… Key Features

* πŸ” Find eigenvectors corresponding to a **given eigenvalue**
* πŸ“ Works with both **numeric** (NumPy/SciPy) and **symbolic** (SymPy) matrices
* πŸ“š Educational use: ideal for students, educators, and math enthusiasts
* 🧠 Supports defective matrices (partial functionality)
* πŸ§ͺ Easy to test and integrate into other math tools

---

## 🚧 Use Cases

* Teaching or learning linear algebra
* Verifying results from numerical solvers
* Debugging or inspecting eigenvalue computations
* Symbolic math derivations
* Building introspection tools for PCA or matrix decompositions

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "eigenfind",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "eigenvectors, eigenvalues, linear algebra, math, numpy, scipy",
    "author": null,
    "author_email": "Aleks Mashanski <maszanski@yahoo.com>",
    "download_url": "https://files.pythonhosted.org/packages/a6/89/adc68ca3aa5b4a3302f9178f8f5e5837d8980b1db3c3ae6a6bef30733910/eigenfind-0.1.0.tar.gz",
    "platform": null,
    "description": "# \ud83d\udccc About `eigenfind`\n\n**`eigenfind`** is a lightweight Python library that allows you to compute **eigenvectors from known eigenvalues** of a square matrix \u2014 a task commonly needed in theoretical mathematics, linear algebra education, and symbolic or numerical analysis.\n\nWhile most libraries like NumPy and SciPy compute eigenvalues and eigenvectors together, `eigenfind` fills a specific niche: solving the **eigenvalue problem in reverse** \u2014 finding eigenvectors **when you already know one or more eigenvalues**.\n\nThis is achieved by solving the homogeneous linear system:\n\n$$\n(A - \\lambda I)\\mathbf{v} = 0\n$$\n\n\u2026which defines the eigenspace for a given eigenvalue `\u03bb` of matrix `A`.\n\n---\n\n## \u2705 Key Features\n\n* \ud83d\udd0d Find eigenvectors corresponding to a **given eigenvalue**\n* \ud83d\udcd0 Works with both **numeric** (NumPy/SciPy) and **symbolic** (SymPy) matrices\n* \ud83d\udcda Educational use: ideal for students, educators, and math enthusiasts\n* \ud83e\udde0 Supports defective matrices (partial functionality)\n* \ud83e\uddea Easy to test and integrate into other math tools\n\n---\n\n## \ud83d\udea7 Use Cases\n\n* Teaching or learning linear algebra\n* Verifying results from numerical solvers\n* Debugging or inspecting eigenvalue computations\n* Symbolic math derivations\n* Building introspection tools for PCA or matrix decompositions\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python library to find eigenvectors by known eigenvalues.",
    "version": "0.1.0",
    "project_urls": {
        "Documentation": "https://github.com/metroproxyn/eigenfind/blob/master/README.md",
        "Homepage": "https://github.com/metroproxyn/eigenfind",
        "Source": "https://github.com/yourusername/eigenfind"
    },
    "split_keywords": [
        "eigenvectors",
        " eigenvalues",
        " linear algebra",
        " math",
        " numpy",
        " scipy"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "37d51726711f3e477c171dfcf3047023742521ee72139318ba108a8fffc830db",
                "md5": "84a6fd412f3c96eb0200fc51c697bc4c",
                "sha256": "81d9b0496de2931b5bc536a401d6f98ca4386a125dcc9ea6e53e0deaf0b76be7"
            },
            "downloads": -1,
            "filename": "eigenfind-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "84a6fd412f3c96eb0200fc51c697bc4c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 4448,
            "upload_time": "2025-08-22T10:11:04",
            "upload_time_iso_8601": "2025-08-22T10:11:04.063150Z",
            "url": "https://files.pythonhosted.org/packages/37/d5/1726711f3e477c171dfcf3047023742521ee72139318ba108a8fffc830db/eigenfind-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a689adc68ca3aa5b4a3302f9178f8f5e5837d8980b1db3c3ae6a6bef30733910",
                "md5": "5810f283e78e463c2f789f10b1465665",
                "sha256": "dd13f7438659dc7bd42ada622c563261ddb2b30a88d18b046d1cdedefeb39382"
            },
            "downloads": -1,
            "filename": "eigenfind-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "5810f283e78e463c2f789f10b1465665",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 3732,
            "upload_time": "2025-08-22T10:11:05",
            "upload_time_iso_8601": "2025-08-22T10:11:05.073071Z",
            "url": "https://files.pythonhosted.org/packages/a6/89/adc68ca3aa5b4a3302f9178f8f5e5837d8980b1db3c3ae6a6bef30733910/eigenfind-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-22 10:11:05",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "metroproxyn",
    "github_project": "eigenfind",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "eigenfind"
}
        
Elapsed time: 1.28505s