ejtraderMT


NameejtraderMT JSON
Version 3.17 PyPI version JSON
download
home_pagehttps://ejtraderMT.readthedocs.io/
SummaryMetatrader API
upload_time2023-06-16 16:29:30
maintainer
docs_urlNone
authorEmerson Pedroso
requires_python>=3
licenseGPL-3.0
keywords metatrader f-api historical-data financial-data stocks funds etfs indices currency crosses bonds commodities crypto currencies
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ![Pypi Publish](https://github.com/ejtraderLabs/ejtraderMT/actions/workflows/python-publish.yml/badge.svg)
[![Release](https://img.shields.io/github/v/release/ejtraderLabs/ejtraderMT)](https://github.com/ejtraderLabs/ejtraderMT/releases/latest)  [![License](https://img.shields.io/github/license/ejtraderLabs/ejtraderMT)](https://github.com/ejtraderLabs/ejtraderMT/blob/master/LICENSE)

# EjtraderMT Python Metatrader 5 API


##### Install stable version using pip 
```
pip install ejtraderMT -U
```
#### From source code

for developers attention may contain countless bugs
```
git clone https://github.com/ejtraderLabs/ejtraderMT
cd ejtraderMT
python setup.py install

or 

pip install git+https://github.com/ejtraderLabs/ejtraderMT.git
```


## Runing Metatrader 5 on Docker or windows machine


#### Easy way is using docker make sure to have docker runing on your machine

```
docker volume create ejtraderMT
docker run -d --restart=always -p 5900:5900 -p 15555:15555 -p 15556:15556 -p 15557:15557 -p 15558:15558 --name ejtraderMT -v ejtraderMT:/data ejtrader/metatrader:5

```
or docker compose

```yml
version: '3.8'
services:
  app:
    container_name: metatrader
    image: ejtrader/metatrader:5
    restart: unless-stopped
    ports:
      - '5900:5900'
      - '15555:15555'
      - '15556:15556'
      - '15557:15557'
      - '15558:15558'
    volumes:
      - ejtraderMT:/data
 
      
volumes:
  ejtraderMT: {}
```

Dockerfile and source for Docker wine vnc [github](https://github.com/ejtraderLabs/Metatrader5-Docker)



##### Access Metatrader 5 via VNC

download VNC VIEWER  or any other vnc client of your preference: [Download](https://www.realvnc.com/connect/download/viewer/)

```
username: root
password: root
```


#### harder way installing direct to your Metatrader 5 on Windows Machine
First download MQL5 source code and install it on the Metatrader 5 [github](https://github.com/ejtraderLabs/MQL5-ejtraderMT)

second download and install Microsoft Visual C++ 2015 [Download](https://www.microsoft.com/pt-br/download/details.aspx?id=52685)











### import

```python
from ejtraderMT import Metatrader
```

### Connect Metatrader 5

make sure ejtraderMT expert are load on the chart

```python
'''
to change the host IP example Metatrader("192.168.1.100") ou
you can use doman example  "metatraderserverdomain.com"

for you local time on the Dataframe  Metatrader(tz_local=True)
attention utc time is the default for Dataframe index "date"


for real volume for active like WIN futures ou centralized market use Metatrader(real_volume=True)
attention tick volume is the default


to use more than one option just use , example Metatrader(host='hostIP',tz_local=True)
'''
api = Metatrader()

```

#### Account information

```python
accountInfo = api.accountInfo()
print(accountInfo)
print(accountInfo['broker'])
print(accountInfo['balance'])
```

#### Economic Calendar

```python
symbol = "EURUSD"
fromDate = "20/08/2021"
toDate = "24/08/2022"

calendar = api.calendar(symbol,fromDate,toDate)
print(calendar)

	              currency	impact	event	country	actual	forecast	previous
date							
2021-08-20 06:00:00	EUR	2	PPI m/m(ppi-mm)	Germany(DE)	1.9	0.9	1.3
2021-08-20 06:00:00	EUR	1	PPI y/y(ppi-yy)	Germany(DE)	10.4	9.4	8.5
2021-08-20 17:00:00	USD	2	Baker Hughes US Oil Rig Count(baker-hughes-us-...	United States(US)	405	None	397
2021-08-20 17:00:00	USD	2	Baker Hughes US Total Rig Count(baker-hughes-u...	United States(US)	503	None	500
2021-08-20 19:30:00	EUR	1	CFTC EUR Non-Commercial Net Positions(cftc-eur...	European Union(EU)	57.6 K	None	33.9 K
...	...	...	...	...	...	...	...
2022-08-24 14:30:00	USD	1	EIA Heating Oil Stocks Change(eia-heating-oil-...	United States(US)	0.845 M	-0.013 M	0.249 M
2022-08-24 14:30:00	USD	1	EIA Gasoline Stocks Change(eia-gasoline-stocks...	United States(US)	-0.027 M	-1.829 M	-4.642 M
2022-08-24 14:30:00	USD	1	EIA Refinery Crude Oil Daily Inputs Change(eia...	United States(US)	-0.168 M	None	-0.158 M
2022-08-24 14:30:00	USD	1	EIA Refinery Utilization Rate Change(eia-refin...	United States(US)	0.3	None	-0.8
2022-08-24 17:00:00	USD	1	5-Year Note Auction(5-year-note-auction)	United States(US)	3.23	None	2.86

```

# History Dataframe Ready

#### History from Date to Date

```python
# you can add unlimited actives to list  ["EURUSD","GBPUSD","AUDUSD"]
symbol = "EURUSD"
timeframe = "M1"
fromDate = "20/02/2021"
toDate = "24/02/2021"

history = api.history(symbol,timeframe,fromDate,toDate)
print(history)
                        open     high      low    close  volume  spread
date
2021-02-21 23:00:00  1.21135  1.21138  1.21131  1.21134     7.0      35
2021-02-21 23:01:00  1.21130  1.21135  1.21130  1.21135     6.0      43
2021-02-21 23:04:00  1.21150  1.21184  1.21134  1.21184    13.0      31
2021-02-21 23:05:00  1.21163  1.21207  1.21148  1.21181    39.0      42
2021-02-21 23:06:00  1.21189  1.21193  1.21182  1.21182    17.0      64
...                      ...      ...      ...      ...     ...     ...
2021-02-24 02:56:00  1.21629  1.21629  1.21590  1.21594    51.0       5
2021-02-24 02:57:00  1.21592  1.21592  1.21574  1.21574    34.0       5
2021-02-24 02:58:00  1.21574  1.21579  1.21572  1.21575    35.0       5
2021-02-24 02:59:00  1.21576  1.21588  1.21573  1.21582    55.0       5
2021-02-24 03:00:00  1.21583  1.21601  1.21578  1.21598    80.0       5

[3104 rows x 6 columns]

```

#### History by period unit like 27 candles

```python
# you can add unlimited actives to list  ["EURUSD","GBPUSD","AUDUSD"]
symbol = "EURUSD"
timeframe = "M1"
fromDate = 27

history = api.history(symbol,timeframe,fromDate)
print(history)

                        open     high      low    close  volume  spread
date
2021-02-26 19:23:00  1.20846  1.20857  1.20837  1.20856    84.0       5
2021-02-26 19:24:00  1.20855  1.20858  1.20842  1.20847    71.0       5
2021-02-26 19:25:00  1.20846  1.20849  1.20832  1.20845    69.0       5
2021-02-26 19:26:00  1.20844  1.20845  1.20823  1.20833    64.0       5
2021-02-26 19:27:00  1.20833  1.20836  1.20821  1.20834    53.0       5
...                      ...      ...      ...      ...     ...     ...
2021-02-26 22:55:00  1.20721  1.20730  1.20718  1.20719    46.0      13
2021-02-26 22:56:00  1.20718  1.20738  1.20718  1.20731    39.0      12
2021-02-26 22:57:00  1.20730  1.20731  1.20716  1.20717    45.0      18
2021-02-26 22:58:00  1.20716  1.20731  1.20694  1.20704    77.0      16
2021-02-26 22:59:00  1.20702  1.20705  1.20702  1.20704    16.0      37
```

#### History for lastest period gread for predict

```python
# you can add unlimited actives to list  ["EURUSD","GBPUSD","AUDUSD"]
symbol = "EURUSD"
timeframe = "M1"
fromDate = 27

history = api.history(symbol,timeframe)
print(history)

                        open     high      low    close  volume  spread
date
2021-02-26 19:23:00  1.20846  1.20857  1.20837  1.20856    84.0       5
2021-02-26 19:24:00  1.20855  1.20858  1.20842  1.20847    71.0       5
2021-02-26 19:25:00  1.20846  1.20849  1.20832  1.20845    69.0       5
2021-02-26 19:26:00  1.20844  1.20845  1.20823  1.20833    64.0       5
2021-02-26 19:27:00  1.20833  1.20836  1.20821  1.20834    53.0       5

```

#### History for multiple symbols merged dataframe

```python
# you can add unlimited actives to list  ["EURUSD","GBPUSD","AUDUSD"] etc
symbol = ["EURUSD","GBPUSD"]
timeframe = "M1"
fromDate = "20/02/2021"
toDate = "24/02/2021"


history = api.history(symbol,timeframe,fromDate,toDate)
print(history)


                        open     high      low    close  volume  spread  gbpusd_open  gbpusd_high  gbpusd_low  gbpusd_close  gbpusd_volume  gbpusd_spread
date
2021-02-21 23:00:00  1.21135  1.21138  1.21131  1.21134     7.0      35      1.40113      1.40113     1.40110       1.40110            2.0            130
2021-02-21 23:04:00  1.21150  1.21184  1.21134  1.21184    13.0      31      1.40119      1.40119     1.40119       1.40119            1.0            102
2021-02-21 23:05:00  1.21163  1.21207  1.21148  1.21181    39.0      42      1.40174      1.40174     1.40167       1.40168           11.0             61
2021-02-21 23:06:00  1.21189  1.21193  1.21182  1.21182    17.0      64      1.40156      1.40170     1.40132       1.40155           10.0             46
2021-02-21 23:07:00  1.21181  1.21182  1.21180  1.21182     4.0      82      1.40156      1.40156     1.40156       1.40156            1.0             63
...                      ...      ...      ...      ...     ...     ...          ...          ...         ...           ...            ...            ...
2021-02-24 02:56:00  1.21629  1.21629  1.21590  1.21594    51.0       5      1.41833      1.41835     1.41786       1.41800           62.0              8
2021-02-24 02:57:00  1.21592  1.21592  1.21574  1.21574    34.0       5      1.41798      1.41801     1.41765       1.41766           54.0              8
2021-02-24 02:58:00  1.21574  1.21579  1.21572  1.21575    35.0       5      1.41767      1.41789     1.41767       1.41768           64.0              8
2021-02-24 02:59:00  1.21576  1.21588  1.21573  1.21582    55.0       5      1.41769      1.41782     1.41764       1.41769           42.0              9
2021-02-24 03:00:00  1.21583  1.21601  1.21578  1.21598    80.0       5      1.41770      1.41797     1.41746       1.41784           95.0              8

[3097 rows x 12 columns]
```

# Live streaming Price

```python
from ejtraderMT import Metatrader

api = Metatrader()

symbols = ["EURUSD","GBPUSD","AUDUSD"]
timeframe = "TICK"


# stream price
while True:
    price = api.price(symbols,timeframe)
    print(price)

```

# Live streaming events

```python
from ejtraderMT import Metatrader


api = Metatrader()

symbols = ["EURUSD","GBPUSD","AUDUSD"]
timeframe = "TICK"


# stream event
while True:
    event = api.event(symbols,timeframe)
    print(event)

```

# Trading and Orders Manipulation

### You can create market or pending order with the commands.

#### Market Orders

```python
# symbol, volume, stoploss, takeprofit, deviation
api.buy("EURUSD", 0.01, 1.18, 1.19, 5)
api.sell("EURUSD", 0.01, 1.18, 1.19, 5)
```

#### Limit Orders

```python
# symbol, volume, stoploss, takeprofit, price, deviation
api.buyLimit("EURUSD", 0.01, 1.17, 1.19, 1.18, 5)
api.sellLimit("EURUSD", 0.01, 1.20, 1.17, 1.19, 5)
```

#### Stop Orders

```python
#symbol, volume, stoploss, takeprofit, price, deviation
api.buyStop("EURUSD", 0.01, 1.18, 1.20, 1.19, 5)
api.sellStop("EURUSD", 0.01, 1.19, 1.17, 1.18, 5)
```

#### Positions & Manipulation

```python
positions = api.positions()


if 'positions' in positions:
    for position in positions['positions']:
        api.CloseById(position['id'])


```

#### Orders & Manipulation

```python
orders = api.orders()

if 'orders' in orders:
    for order in orders['orders']:
        api.CancelById(order['id'])

```

#### Modify possition

```python

api.positionModify( id, stoploss, takeprofit)

```

#### Modify order

```python
api.orderModify( id, stoploss, takeprofit, price)

```

#### close by symbol

```python
api.CloseBySymbol("EURUSD")

```

#### close particial

```python
# id , volume
api.ClosePartial( id, volume)

```

#### If you want to cancel all Orders

```python
api.cancel_all()
```

#### if you want to close all positions

```python
api.close_all()
```

```

# Project Based and reference thanks for

Ding Li @dingmaotu
https://github.com/dingmaotu/mql-zmq

Nikolai khramkov @khramkov
https://github.com/khramkov/MQL5-JSON-API


```

# New funcion persistent history Data on SQLite Multithrering

### for saving to database

```python
from ejtraderMT import Metatrader

api = Metatrader()

symbols = ["EURUSD"] # you can also use combind dataframe = ["EURUSD","GBPUSD","AUDUSD"]
timeframe = "M1"
# saving 20 years of OHLC
fromDate = "01/01/2001"
toDate = "01/01/2021"


api.history(symbol,timeframe,fromDate,toDate,database=True)

# or you could only pass from Date you want to start


"""
you can pull the history and save using only fromDate
its will pull history fromDate till now

api.history(symbol,timeframe,fromDate,database=True)
"""

# example of saving 20 years of M1 OHLC takes around 3 minutes on a 4 core CPU

 30%|█████████████████████████████████▋                              | 2174/7305 [01:10<02:28, 34.60it/s]
```

# Read from Database

```python
from ejtraderMT import Metatrader

api = Metatrader()

symbol = ["EURUSD"]



data = api.history(symbol)

# example reading 20 year of M1 OHLC takes around 2 seconds read more than 7 million canldes
Elapsed run time: 2.041501855 seconds
                        date     open     high      low    close  volume  spread
0        2001-01-01 04:02:00  0.94220  0.94220  0.94220  0.94220     1.0      50
1        2001-01-01 04:03:00  0.94240  0.94240  0.94240  0.94240     1.0      50
2        2001-01-01 10:47:00  0.94250  0.94250  0.94250  0.94250     1.0      50
3        2001-01-01 11:40:00  0.94190  0.94190  0.94190  0.94190     1.0      50
4        2001-01-01 14:45:00  0.93970  0.93990  0.93970  0.93990     3.0      50
...                      ...      ...      ...      ...      ...     ...     ...
7286195  2020-12-31 17:56:00  1.22147  1.22152  1.22147  1.22152    20.0       8
7286196  2020-12-31 17:57:00  1.22152  1.22162  1.22148  1.22157    58.0       8
7286197  2020-12-31 17:58:00  1.22157  1.22167  1.22152  1.22166    77.0       9
7286198  2020-12-31 17:59:00  1.22167  1.22177  1.22154  1.22154   129.0       8
7286199  2020-12-31 18:00:00  1.22156  1.22156  1.22155  1.22155     2.0      11

[7286200 rows x 7 columns]

```

### Future add comming soon

```
economic calendar
level 1 for futures only
level 2 for futures only


```

            

Raw data

            {
    "_id": null,
    "home_page": "https://ejtraderMT.readthedocs.io/",
    "name": "ejtraderMT",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3",
    "maintainer_email": "",
    "keywords": "metatrader,f-api,historical-data,financial-data,stocks,funds,etfs,indices,currency crosses,bonds,commodities,crypto currencies",
    "author": "Emerson Pedroso",
    "author_email": "support@ejtrader.com",
    "download_url": "https://files.pythonhosted.org/packages/69/4c/b60174f104eec6624defb218ed5d8ee6ce5bc5ffa6df6dc7edbd3a415cf2/ejtraderMT-3.17.tar.gz",
    "platform": null,
    "description": "![Pypi Publish](https://github.com/ejtraderLabs/ejtraderMT/actions/workflows/python-publish.yml/badge.svg)\n[![Release](https://img.shields.io/github/v/release/ejtraderLabs/ejtraderMT)](https://github.com/ejtraderLabs/ejtraderMT/releases/latest)  [![License](https://img.shields.io/github/license/ejtraderLabs/ejtraderMT)](https://github.com/ejtraderLabs/ejtraderMT/blob/master/LICENSE)\n\n# EjtraderMT Python Metatrader 5 API\n\n\n##### Install stable version using pip \n```\npip install ejtraderMT -U\n```\n#### From source code\n\nfor developers attention may contain countless bugs\n```\ngit clone https://github.com/ejtraderLabs/ejtraderMT\ncd ejtraderMT\npython setup.py install\n\nor \n\npip install git+https://github.com/ejtraderLabs/ejtraderMT.git\n```\n\n\n## Runing Metatrader 5 on Docker or windows machine\n\n\n#### Easy way is using docker make sure to have docker runing on your machine\n\n```\ndocker volume create ejtraderMT\ndocker run -d --restart=always -p 5900:5900 -p 15555:15555 -p 15556:15556 -p 15557:15557 -p 15558:15558 --name ejtraderMT -v ejtraderMT:/data ejtrader/metatrader:5\n\n```\nor docker compose\n\n```yml\nversion: '3.8'\nservices:\n  app:\n    container_name: metatrader\n    image: ejtrader/metatrader:5\n    restart: unless-stopped\n    ports:\n      - '5900:5900'\n      - '15555:15555'\n      - '15556:15556'\n      - '15557:15557'\n      - '15558:15558'\n    volumes:\n      - ejtraderMT:/data\n \n      \nvolumes:\n  ejtraderMT: {}\n```\n\nDockerfile and source for Docker wine vnc [github](https://github.com/ejtraderLabs/Metatrader5-Docker)\n\n\n\n##### Access Metatrader 5 via VNC\n\ndownload VNC VIEWER  or any other vnc client of your preference: [Download](https://www.realvnc.com/connect/download/viewer/)\n\n```\nusername: root\npassword: root\n```\n\n\n#### harder way installing direct to your Metatrader 5 on Windows Machine\nFirst download MQL5 source code and install it on the Metatrader 5 [github](https://github.com/ejtraderLabs/MQL5-ejtraderMT)\n\nsecond download and install Microsoft Visual C++ 2015 [Download](https://www.microsoft.com/pt-br/download/details.aspx?id=52685)\n\n\n\n\n\n\n\n\n\n\n\n### import\n\n```python\nfrom ejtraderMT import Metatrader\n```\n\n### Connect Metatrader 5\n\nmake sure ejtraderMT expert are load on the chart\n\n```python\n'''\nto change the host IP example Metatrader(\"192.168.1.100\") ou\nyou can use doman example  \"metatraderserverdomain.com\"\n\nfor you local time on the Dataframe  Metatrader(tz_local=True)\nattention utc time is the default for Dataframe index \"date\"\n\n\nfor real volume for active like WIN futures ou centralized market use Metatrader(real_volume=True)\nattention tick volume is the default\n\n\nto use more than one option just use , example Metatrader(host='hostIP',tz_local=True)\n'''\napi = Metatrader()\n\n```\n\n#### Account information\n\n```python\naccountInfo = api.accountInfo()\nprint(accountInfo)\nprint(accountInfo['broker'])\nprint(accountInfo['balance'])\n```\n\n#### Economic Calendar\n\n```python\nsymbol = \"EURUSD\"\nfromDate = \"20/08/2021\"\ntoDate = \"24/08/2022\"\n\ncalendar = api.calendar(symbol,fromDate,toDate)\nprint(calendar)\n\n\t              currency\timpact\tevent\tcountry\tactual\tforecast\tprevious\ndate\t\t\t\t\t\t\t\n2021-08-20 06:00:00\tEUR\t2\tPPI m/m(ppi-mm)\tGermany(DE)\t1.9\t0.9\t1.3\n2021-08-20 06:00:00\tEUR\t1\tPPI y/y(ppi-yy)\tGermany(DE)\t10.4\t9.4\t8.5\n2021-08-20 17:00:00\tUSD\t2\tBaker Hughes US Oil Rig Count(baker-hughes-us-...\tUnited States(US)\t405\tNone\t397\n2021-08-20 17:00:00\tUSD\t2\tBaker Hughes US Total Rig Count(baker-hughes-u...\tUnited States(US)\t503\tNone\t500\n2021-08-20 19:30:00\tEUR\t1\tCFTC EUR Non-Commercial Net Positions(cftc-eur...\tEuropean Union(EU)\t57.6 K\tNone\t33.9 K\n...\t...\t...\t...\t...\t...\t...\t...\n2022-08-24 14:30:00\tUSD\t1\tEIA Heating Oil Stocks Change(eia-heating-oil-...\tUnited States(US)\t0.845 M\t-0.013 M\t0.249 M\n2022-08-24 14:30:00\tUSD\t1\tEIA Gasoline Stocks Change(eia-gasoline-stocks...\tUnited States(US)\t-0.027 M\t-1.829 M\t-4.642 M\n2022-08-24 14:30:00\tUSD\t1\tEIA Refinery Crude Oil Daily Inputs Change(eia...\tUnited States(US)\t-0.168 M\tNone\t-0.158 M\n2022-08-24 14:30:00\tUSD\t1\tEIA Refinery Utilization Rate Change(eia-refin...\tUnited States(US)\t0.3\tNone\t-0.8\n2022-08-24 17:00:00\tUSD\t1\t5-Year Note Auction(5-year-note-auction)\tUnited States(US)\t3.23\tNone\t2.86\n\n```\n\n# History Dataframe Ready\n\n#### History from Date to Date\n\n```python\n# you can add unlimited actives to list  [\"EURUSD\",\"GBPUSD\",\"AUDUSD\"]\nsymbol = \"EURUSD\"\ntimeframe = \"M1\"\nfromDate = \"20/02/2021\"\ntoDate = \"24/02/2021\"\n\nhistory = api.history(symbol,timeframe,fromDate,toDate)\nprint(history)\n                        open     high      low    close  volume  spread\ndate\n2021-02-21 23:00:00  1.21135  1.21138  1.21131  1.21134     7.0      35\n2021-02-21 23:01:00  1.21130  1.21135  1.21130  1.21135     6.0      43\n2021-02-21 23:04:00  1.21150  1.21184  1.21134  1.21184    13.0      31\n2021-02-21 23:05:00  1.21163  1.21207  1.21148  1.21181    39.0      42\n2021-02-21 23:06:00  1.21189  1.21193  1.21182  1.21182    17.0      64\n...                      ...      ...      ...      ...     ...     ...\n2021-02-24 02:56:00  1.21629  1.21629  1.21590  1.21594    51.0       5\n2021-02-24 02:57:00  1.21592  1.21592  1.21574  1.21574    34.0       5\n2021-02-24 02:58:00  1.21574  1.21579  1.21572  1.21575    35.0       5\n2021-02-24 02:59:00  1.21576  1.21588  1.21573  1.21582    55.0       5\n2021-02-24 03:00:00  1.21583  1.21601  1.21578  1.21598    80.0       5\n\n[3104 rows x 6 columns]\n\n```\n\n#### History by period unit like 27 candles\n\n```python\n# you can add unlimited actives to list  [\"EURUSD\",\"GBPUSD\",\"AUDUSD\"]\nsymbol = \"EURUSD\"\ntimeframe = \"M1\"\nfromDate = 27\n\nhistory = api.history(symbol,timeframe,fromDate)\nprint(history)\n\n                        open     high      low    close  volume  spread\ndate\n2021-02-26 19:23:00  1.20846  1.20857  1.20837  1.20856    84.0       5\n2021-02-26 19:24:00  1.20855  1.20858  1.20842  1.20847    71.0       5\n2021-02-26 19:25:00  1.20846  1.20849  1.20832  1.20845    69.0       5\n2021-02-26 19:26:00  1.20844  1.20845  1.20823  1.20833    64.0       5\n2021-02-26 19:27:00  1.20833  1.20836  1.20821  1.20834    53.0       5\n...                      ...      ...      ...      ...     ...     ...\n2021-02-26 22:55:00  1.20721  1.20730  1.20718  1.20719    46.0      13\n2021-02-26 22:56:00  1.20718  1.20738  1.20718  1.20731    39.0      12\n2021-02-26 22:57:00  1.20730  1.20731  1.20716  1.20717    45.0      18\n2021-02-26 22:58:00  1.20716  1.20731  1.20694  1.20704    77.0      16\n2021-02-26 22:59:00  1.20702  1.20705  1.20702  1.20704    16.0      37\n```\n\n#### History for lastest period gread for predict\n\n```python\n# you can add unlimited actives to list  [\"EURUSD\",\"GBPUSD\",\"AUDUSD\"]\nsymbol = \"EURUSD\"\ntimeframe = \"M1\"\nfromDate = 27\n\nhistory = api.history(symbol,timeframe)\nprint(history)\n\n                        open     high      low    close  volume  spread\ndate\n2021-02-26 19:23:00  1.20846  1.20857  1.20837  1.20856    84.0       5\n2021-02-26 19:24:00  1.20855  1.20858  1.20842  1.20847    71.0       5\n2021-02-26 19:25:00  1.20846  1.20849  1.20832  1.20845    69.0       5\n2021-02-26 19:26:00  1.20844  1.20845  1.20823  1.20833    64.0       5\n2021-02-26 19:27:00  1.20833  1.20836  1.20821  1.20834    53.0       5\n\n```\n\n#### History for multiple symbols merged dataframe\n\n```python\n# you can add unlimited actives to list  [\"EURUSD\",\"GBPUSD\",\"AUDUSD\"] etc\nsymbol = [\"EURUSD\",\"GBPUSD\"]\ntimeframe = \"M1\"\nfromDate = \"20/02/2021\"\ntoDate = \"24/02/2021\"\n\n\nhistory = api.history(symbol,timeframe,fromDate,toDate)\nprint(history)\n\n\n                        open     high      low    close  volume  spread  gbpusd_open  gbpusd_high  gbpusd_low  gbpusd_close  gbpusd_volume  gbpusd_spread\ndate\n2021-02-21 23:00:00  1.21135  1.21138  1.21131  1.21134     7.0      35      1.40113      1.40113     1.40110       1.40110            2.0            130\n2021-02-21 23:04:00  1.21150  1.21184  1.21134  1.21184    13.0      31      1.40119      1.40119     1.40119       1.40119            1.0            102\n2021-02-21 23:05:00  1.21163  1.21207  1.21148  1.21181    39.0      42      1.40174      1.40174     1.40167       1.40168           11.0             61\n2021-02-21 23:06:00  1.21189  1.21193  1.21182  1.21182    17.0      64      1.40156      1.40170     1.40132       1.40155           10.0             46\n2021-02-21 23:07:00  1.21181  1.21182  1.21180  1.21182     4.0      82      1.40156      1.40156     1.40156       1.40156            1.0             63\n...                      ...      ...      ...      ...     ...     ...          ...          ...         ...           ...            ...            ...\n2021-02-24 02:56:00  1.21629  1.21629  1.21590  1.21594    51.0       5      1.41833      1.41835     1.41786       1.41800           62.0              8\n2021-02-24 02:57:00  1.21592  1.21592  1.21574  1.21574    34.0       5      1.41798      1.41801     1.41765       1.41766           54.0              8\n2021-02-24 02:58:00  1.21574  1.21579  1.21572  1.21575    35.0       5      1.41767      1.41789     1.41767       1.41768           64.0              8\n2021-02-24 02:59:00  1.21576  1.21588  1.21573  1.21582    55.0       5      1.41769      1.41782     1.41764       1.41769           42.0              9\n2021-02-24 03:00:00  1.21583  1.21601  1.21578  1.21598    80.0       5      1.41770      1.41797     1.41746       1.41784           95.0              8\n\n[3097 rows x 12 columns]\n```\n\n# Live streaming Price\n\n```python\nfrom ejtraderMT import Metatrader\n\napi = Metatrader()\n\nsymbols = [\"EURUSD\",\"GBPUSD\",\"AUDUSD\"]\ntimeframe = \"TICK\"\n\n\n# stream price\nwhile True:\n    price = api.price(symbols,timeframe)\n    print(price)\n\n```\n\n# Live streaming events\n\n```python\nfrom ejtraderMT import Metatrader\n\n\napi = Metatrader()\n\nsymbols = [\"EURUSD\",\"GBPUSD\",\"AUDUSD\"]\ntimeframe = \"TICK\"\n\n\n# stream event\nwhile True:\n    event = api.event(symbols,timeframe)\n    print(event)\n\n```\n\n# Trading and Orders Manipulation\n\n### You can create market or pending order with the commands.\n\n#### Market Orders\n\n```python\n# symbol, volume, stoploss, takeprofit, deviation\napi.buy(\"EURUSD\", 0.01, 1.18, 1.19, 5)\napi.sell(\"EURUSD\", 0.01, 1.18, 1.19, 5)\n```\n\n#### Limit Orders\n\n```python\n# symbol, volume, stoploss, takeprofit, price, deviation\napi.buyLimit(\"EURUSD\", 0.01, 1.17, 1.19, 1.18, 5)\napi.sellLimit(\"EURUSD\", 0.01, 1.20, 1.17, 1.19, 5)\n```\n\n#### Stop Orders\n\n```python\n#symbol, volume, stoploss, takeprofit, price, deviation\napi.buyStop(\"EURUSD\", 0.01, 1.18, 1.20, 1.19, 5)\napi.sellStop(\"EURUSD\", 0.01, 1.19, 1.17, 1.18, 5)\n```\n\n#### Positions & Manipulation\n\n```python\npositions = api.positions()\n\n\nif 'positions' in positions:\n    for position in positions['positions']:\n        api.CloseById(position['id'])\n\n\n```\n\n#### Orders & Manipulation\n\n```python\norders = api.orders()\n\nif 'orders' in orders:\n    for order in orders['orders']:\n        api.CancelById(order['id'])\n\n```\n\n#### Modify possition\n\n```python\n\napi.positionModify( id, stoploss, takeprofit)\n\n```\n\n#### Modify order\n\n```python\napi.orderModify( id, stoploss, takeprofit, price)\n\n```\n\n#### close by symbol\n\n```python\napi.CloseBySymbol(\"EURUSD\")\n\n```\n\n#### close particial\n\n```python\n# id , volume\napi.ClosePartial( id, volume)\n\n```\n\n#### If you want to cancel all Orders\n\n```python\napi.cancel_all()\n```\n\n#### if you want to close all positions\n\n```python\napi.close_all()\n```\n\n```\n\n# Project Based and reference thanks for\n\nDing Li @dingmaotu\nhttps://github.com/dingmaotu/mql-zmq\n\nNikolai khramkov @khramkov\nhttps://github.com/khramkov/MQL5-JSON-API\n\n\n```\n\n# New funcion persistent history Data on SQLite Multithrering\n\n### for saving to database\n\n```python\nfrom ejtraderMT import Metatrader\n\napi = Metatrader()\n\nsymbols = [\"EURUSD\"] # you can also use combind dataframe = [\"EURUSD\",\"GBPUSD\",\"AUDUSD\"]\ntimeframe = \"M1\"\n# saving 20 years of OHLC\nfromDate = \"01/01/2001\"\ntoDate = \"01/01/2021\"\n\n\napi.history(symbol,timeframe,fromDate,toDate,database=True)\n\n# or you could only pass from Date you want to start\n\n\n\"\"\"\nyou can pull the history and save using only fromDate\nits will pull history fromDate till now\n\napi.history(symbol,timeframe,fromDate,database=True)\n\"\"\"\n\n# example of saving 20 years of M1 OHLC takes around 3 minutes on a 4 core CPU\n\n 30%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u258b                              | 2174/7305 [01:10<02:28, 34.60it/s]\n```\n\n# Read from Database\n\n```python\nfrom ejtraderMT import Metatrader\n\napi = Metatrader()\n\nsymbol = [\"EURUSD\"]\n\n\n\ndata = api.history(symbol)\n\n# example reading 20 year of M1 OHLC takes around 2 seconds read more than 7 million canldes\nElapsed run time: 2.041501855 seconds\n                        date     open     high      low    close  volume  spread\n0        2001-01-01 04:02:00  0.94220  0.94220  0.94220  0.94220     1.0      50\n1        2001-01-01 04:03:00  0.94240  0.94240  0.94240  0.94240     1.0      50\n2        2001-01-01 10:47:00  0.94250  0.94250  0.94250  0.94250     1.0      50\n3        2001-01-01 11:40:00  0.94190  0.94190  0.94190  0.94190     1.0      50\n4        2001-01-01 14:45:00  0.93970  0.93990  0.93970  0.93990     3.0      50\n...                      ...      ...      ...      ...      ...     ...     ...\n7286195  2020-12-31 17:56:00  1.22147  1.22152  1.22147  1.22152    20.0       8\n7286196  2020-12-31 17:57:00  1.22152  1.22162  1.22148  1.22157    58.0       8\n7286197  2020-12-31 17:58:00  1.22157  1.22167  1.22152  1.22166    77.0       9\n7286198  2020-12-31 17:59:00  1.22167  1.22177  1.22154  1.22154   129.0       8\n7286199  2020-12-31 18:00:00  1.22156  1.22156  1.22155  1.22155     2.0      11\n\n[7286200 rows x 7 columns]\n\n```\n\n### Future add comming soon\n\n```\neconomic calendar\nlevel 1 for futures only\nlevel 2 for futures only\n\n\n```\n",
    "bugtrack_url": null,
    "license": "GPL-3.0",
    "summary": "Metatrader API",
    "version": "3.17",
    "project_urls": {
        "Bug Reports": "https://github.com/traderpedroso/ejtraderMT/issues",
        "Documentation": "https://ejtrader.readthedocs.io/",
        "Download": "https://ejtrader.com",
        "Homepage": "https://ejtraderMT.readthedocs.io/",
        "Source": "https://github.com/traderpedroso/ejtraderMT"
    },
    "split_keywords": [
        "metatrader",
        "f-api",
        "historical-data",
        "financial-data",
        "stocks",
        "funds",
        "etfs",
        "indices",
        "currency crosses",
        "bonds",
        "commodities",
        "crypto currencies"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f6191481b90522415f7dde6cdaf33545a21b3c862ec02d722043f49f4ee8fe0e",
                "md5": "3f178ec19a25e1e4f59e35ca76e5fca6",
                "sha256": "6b22be054d440bdcf04076867d1fc6c6aae44bb8c1b95ba1b8525ff1aae3b4ee"
            },
            "downloads": -1,
            "filename": "ejtraderMT-3.17-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3f178ec19a25e1e4f59e35ca76e5fca6",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3",
            "size": 23511,
            "upload_time": "2023-06-16T16:29:28",
            "upload_time_iso_8601": "2023-06-16T16:29:28.699003Z",
            "url": "https://files.pythonhosted.org/packages/f6/19/1481b90522415f7dde6cdaf33545a21b3c862ec02d722043f49f4ee8fe0e/ejtraderMT-3.17-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "694cb60174f104eec6624defb218ed5d8ee6ce5bc5ffa6df6dc7edbd3a415cf2",
                "md5": "a068c53bd45bbdfa182e80c572bfa67b",
                "sha256": "31f5f1d2db8d788deb6903c20f0f95cf61ea62af38a4573fc80b379d3a66d85f"
            },
            "downloads": -1,
            "filename": "ejtraderMT-3.17.tar.gz",
            "has_sig": false,
            "md5_digest": "a068c53bd45bbdfa182e80c572bfa67b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3",
            "size": 27839,
            "upload_time": "2023-06-16T16:29:30",
            "upload_time_iso_8601": "2023-06-16T16:29:30.758242Z",
            "url": "https://files.pythonhosted.org/packages/69/4c/b60174f104eec6624defb218ed5d8ee6ce5bc5ffa6df6dc7edbd3a415cf2/ejtraderMT-3.17.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-16 16:29:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "traderpedroso",
    "github_project": "ejtraderMT",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "ejtradermt"
}
        
Elapsed time: 0.09019s