[![PyPI version](https://badge.fury.io/py/element-array-ephys.svg)](http://badge.fury.io/py/element-array-ephys)
# DataJoint Element for Extracellular Electrophysiology
DataJoint Element for extracellular array electrophysiology that processes data
acquired with a polytrode probe
(e.g. [Neuropixels](https://www.neuropixels.org), Neuralynx) using the
[SpikeGLX](https://github.com/billkarsh/SpikeGLX) or
[OpenEphys](https://open-ephys.org/gui) acquisition software and
[MATLAB-based Kilosort](https://github.com/MouseLand/Kilosort) or [python-based
Kilosort](https://github.com/MouseLand/pykilosort) spike sorting software. DataJoint
Elements collectively standardize and automate data collection and analysis for
neuroscience experiments. Each Element is a modular pipeline for data storage and
processing with corresponding database tables that can be combined with other Elements
to assemble a fully functional pipeline.
## Experiment flowchart
![flowchart](https://raw.githubusercontent.com/datajoint/element-array-ephys/main/images/diagram_flowchart.svg)
## Data Pipeline Diagram
![datajoint](https://raw.githubusercontent.com/datajoint/element-array-ephys/main/images/attached_array_ephys_element_acute.svg)
## Getting Started
+ Install from PyPI
```bash
pip install element-array-ephys
```
+ [Interactive tutorial on GitHub Codespaces](https://github.com/datajoint/workflow-array-ephys#interactive-tutorial)
+ [Documentation](https://datajoint.com/docs/elements/element-array-ephys)
## Support
+ If you need help getting started or run into any errors, please contact our team by email at support@datajoint.com.
Raw data
{
"_id": null,
"home_page": "https://github.com/datajoint/element-array-ephys",
"name": "element-array-ephys",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "neuroscience electrophysiology science datajoint",
"author": "DataJoint",
"author_email": "info@datajoint.com",
"download_url": "https://files.pythonhosted.org/packages/ad/6c/47f3ab6067ab2a9305a65fd7a56b6941d1760951258c55111c6aa5fda7b5/element-array-ephys-0.2.11.tar.gz",
"platform": null,
"description": "[![PyPI version](https://badge.fury.io/py/element-array-ephys.svg)](http://badge.fury.io/py/element-array-ephys)\n\n# DataJoint Element for Extracellular Electrophysiology\n\nDataJoint Element for extracellular array electrophysiology that processes data \nacquired with a polytrode probe\n(e.g. [Neuropixels](https://www.neuropixels.org), Neuralynx) using the\n[SpikeGLX](https://github.com/billkarsh/SpikeGLX) or\n[OpenEphys](https://open-ephys.org/gui) acquisition software and \n[MATLAB-based Kilosort](https://github.com/MouseLand/Kilosort) or [python-based\nKilosort](https://github.com/MouseLand/pykilosort) spike sorting software. DataJoint \nElements collectively standardize and automate data collection and analysis for \nneuroscience experiments. Each Element is a modular pipeline for data storage and \nprocessing with corresponding database tables that can be combined with other Elements \nto assemble a fully functional pipeline.\n\n## Experiment flowchart\n\n![flowchart](https://raw.githubusercontent.com/datajoint/element-array-ephys/main/images/diagram_flowchart.svg)\n\n## Data Pipeline Diagram\n\n![datajoint](https://raw.githubusercontent.com/datajoint/element-array-ephys/main/images/attached_array_ephys_element_acute.svg)\n\n\n## Getting Started\n\n+ Install from PyPI\n\n ```bash\n pip install element-array-ephys\n ```\n\n+ [Interactive tutorial on GitHub Codespaces](https://github.com/datajoint/workflow-array-ephys#interactive-tutorial)\n\n+ [Documentation](https://datajoint.com/docs/elements/element-array-ephys)\n\n## Support\n\n+ If you need help getting started or run into any errors, please contact our team by email at support@datajoint.com.\n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "DataJoint Element for Extracellular Array Electrophysiology",
"version": "0.2.11",
"project_urls": {
"Homepage": "https://github.com/datajoint/element-array-ephys"
},
"split_keywords": [
"neuroscience",
"electrophysiology",
"science",
"datajoint"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ace102e127eb959379eb5b529dbb195ad0d6779d3d00e2c218763ded63f24cad",
"md5": "8962d306ee1ac309c34718d3ed07b7da",
"sha256": "8e4f133d6081c9656211906b9353d140fd3a781fe5481660a358d68ab395293e"
},
"downloads": -1,
"filename": "element_array_ephys-0.2.11-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8962d306ee1ac309c34718d3ed07b7da",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 95378,
"upload_time": "2023-06-30T15:24:36",
"upload_time_iso_8601": "2023-06-30T15:24:36.529656Z",
"url": "https://files.pythonhosted.org/packages/ac/e1/02e127eb959379eb5b529dbb195ad0d6779d3d00e2c218763ded63f24cad/element_array_ephys-0.2.11-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ad6c47f3ab6067ab2a9305a65fd7a56b6941d1760951258c55111c6aa5fda7b5",
"md5": "097a9846a2ebcd5e128ac9352443345c",
"sha256": "263b78a8fde2388529bce4375ba2b830628407ade2944ae7f7592b4e22819fa8"
},
"downloads": -1,
"filename": "element-array-ephys-0.2.11.tar.gz",
"has_sig": false,
"md5_digest": "097a9846a2ebcd5e128ac9352443345c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 85889,
"upload_time": "2023-06-30T15:24:37",
"upload_time_iso_8601": "2023-06-30T15:24:37.964306Z",
"url": "https://files.pythonhosted.org/packages/ad/6c/47f3ab6067ab2a9305a65fd7a56b6941d1760951258c55111c6aa5fda7b5/element-array-ephys-0.2.11.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-06-30 15:24:37",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "datajoint",
"github_project": "element-array-ephys",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "element-array-ephys"
}