element-event


Nameelement-event JSON
Version 0.2.3 PyPI version JSON
download
home_pagehttps://github.com/datajoint/element-event
SummaryDataJoint Elements for Trialized Experiments
upload_time2023-06-21 01:54:41
maintainer
docs_urlNone
authorDataJoint
requires_python
licenseMIT
keywords neuroscience behavior bpod trials datajoint
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![PyPI version](https://badge.fury.io/py/element-event.svg)](http://badge.fury.io/py/element-event)

# DataJoint Element - Experimental trials

+ `element-event` features a DataJoint pipeline design for event, trial, and block management. 

+ `element-event` is not a complete workflow by itself, but rather a modular design of tables and dependencies. 

+ `element-event` can be flexibly attached to any DataJoint workflow.

+ See the [Element Event documentation](https://elements.datajoint.org/description/event/) for the background information and development timeline.

+ For more information on the DataJoint Elements project, please visit https://elements.datajoint.org.  This work is supported by the National Institutes of Health.

## Element architecture

In diagram below, ***BehaviorRecording*** table starts immediately downstream from
***Session***. Recordings can be segmented into both trials, which are assumed to have 
duration, and events, which may be instantaneous. Researchers may find one or both  appropriate for their particular paradigm. A set of trials can be further organized into
blocks, representing a larger span of time. We provide an
[example workflow](https://github.com/datajoint/workflow-trial/) with a
[pipeline script](https://github.com/datajoint/workflow-trial/blob/main/workflow_trial/pipeline.py)
that models combining this Element with the corresponding 
[Element-Session](https://github.com/datajoint/element-session).

### Trial & Event Schemas

![trial and event schemas](./images/trial_event_diagram.svg)

## Installation

+ Install `element-event`
    ```
    pip install element-event
    ```

+ Upgrade `element-event` previously installed with `pip`
    ```
    pip install --upgrade element-event
    ```

<!---
+ Install `element-interface`

    + `element-interface` is a dependency of `element-event`, however it is not 
      contained within `requirements.txt`.

    ```
    pip install "element-interface @ git+https://github.com/datajoint/element-interface"
    ```
-->

## Usage

### Element activation

To activate the `element-event`, one need to provide:

1. Schema names for the event or trial module
2. Upstream Session table: A set of keys identifying a recording session (see [
Element-Session](https://github.com/datajoint/element-session)).
3. Utility functions. See 
[example definitions here](https://github.com/datajoint/workflow-trial/blob/main/workflow_trial/paths.py)

For more detail, check the docstring of the `element-event`:

```python
from element_event import event, trial

help(event.activate)
help(trial.activate)
```

### Element usage

+ See the 
[workflow-calcium-imaging](https://github.com/datajoint/workflow-calcium-imaging), 
[workflow-array-ephys](https://github.com/datajoint/workflow-array-ephys), and 
[workflow-miniscope](https://github.com/datajoint/workflow-miniscope) 
repositories for example usages of `element-event`.

## Citation

+ If your work uses DataJoint and DataJoint Elements, please cite the respective Research Resource Identifiers (RRIDs) and manuscripts.

+ DataJoint for Python or MATLAB
    + Yatsenko D, Reimer J, Ecker AS, Walker EY, Sinz F, Berens P, Hoenselaar A, Cotton RJ, Siapas AS, Tolias AS. DataJoint: managing big scientific data using MATLAB or Python. bioRxiv. 2015 Jan 1:031658. doi: https://doi.org/10.1101/031658

    + DataJoint ([RRID:SCR_014543](https://scicrunch.org/resolver/SCR_014543)) - DataJoint for `<Select Python or MATLAB>` (version `<Enter version number>`)

+ DataJoint Elements
    + Yatsenko D, Nguyen T, Shen S, Gunalan K, Turner CA, Guzman R, Sasaki M, Sitonic D, Reimer J, Walker EY, Tolias AS. DataJoint Elements: Data Workflows for Neurophysiology. bioRxiv. 2021 Jan 1. doi: https://doi.org/10.1101/2021.03.30.437358

    + DataJoint Elements ([RRID:SCR_021894](https://scicrunch.org/resolver/SCR_021894)) - Element Event (version `<Enter version number>`)


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/datajoint/element-event",
    "name": "element-event",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "neuroscience behavior bpod trials datajoint",
    "author": "DataJoint",
    "author_email": "info@datajoint.com",
    "download_url": "https://files.pythonhosted.org/packages/09/0f/088fdd1c49db052f94dd2b728256967d5618cc61586ef2c773226d9415dc/element-event-0.2.3.tar.gz",
    "platform": null,
    "description": "[![PyPI version](https://badge.fury.io/py/element-event.svg)](http://badge.fury.io/py/element-event)\n\n# DataJoint Element - Experimental trials\n\n+ `element-event` features a DataJoint pipeline design for event, trial, and block management. \n\n+ `element-event` is not a complete workflow by itself, but rather a modular design of tables and dependencies. \n\n+ `element-event` can be flexibly attached to any DataJoint workflow.\n\n+ See the [Element Event documentation](https://elements.datajoint.org/description/event/) for the background information and development timeline.\n\n+ For more information on the DataJoint Elements project, please visit https://elements.datajoint.org.  This work is supported by the National Institutes of Health.\n\n## Element architecture\n\nIn diagram below, ***BehaviorRecording*** table starts immediately downstream from\n***Session***. Recordings can be segmented into both trials, which are assumed to have \nduration, and events, which may be instantaneous. Researchers may find one or both  appropriate for their particular paradigm. A set of trials can be further organized into\nblocks, representing a larger span of time. We provide an\n[example workflow](https://github.com/datajoint/workflow-trial/) with a\n[pipeline script](https://github.com/datajoint/workflow-trial/blob/main/workflow_trial/pipeline.py)\nthat models combining this Element with the corresponding \n[Element-Session](https://github.com/datajoint/element-session).\n\n### Trial & Event Schemas\n\n![trial and event schemas](./images/trial_event_diagram.svg)\n\n## Installation\n\n+ Install `element-event`\n    ```\n    pip install element-event\n    ```\n\n+ Upgrade `element-event` previously installed with `pip`\n    ```\n    pip install --upgrade element-event\n    ```\n\n<!---\n+ Install `element-interface`\n\n    + `element-interface` is a dependency of `element-event`, however it is not \n      contained within `requirements.txt`.\n\n    ```\n    pip install \"element-interface @ git+https://github.com/datajoint/element-interface\"\n    ```\n-->\n\n## Usage\n\n### Element activation\n\nTo activate the `element-event`, one need to provide:\n\n1. Schema names for the event or trial module\n2. Upstream Session table: A set of keys identifying a recording session (see [\nElement-Session](https://github.com/datajoint/element-session)).\n3. Utility functions. See \n[example definitions here](https://github.com/datajoint/workflow-trial/blob/main/workflow_trial/paths.py)\n\nFor more detail, check the docstring of the `element-event`:\n\n```python\nfrom element_event import event, trial\n\nhelp(event.activate)\nhelp(trial.activate)\n```\n\n### Element usage\n\n+ See the \n[workflow-calcium-imaging](https://github.com/datajoint/workflow-calcium-imaging), \n[workflow-array-ephys](https://github.com/datajoint/workflow-array-ephys), and \n[workflow-miniscope](https://github.com/datajoint/workflow-miniscope) \nrepositories for example usages of `element-event`.\n\n## Citation\n\n+ If your work uses DataJoint and DataJoint Elements, please cite the respective Research Resource Identifiers (RRIDs) and manuscripts.\n\n+ DataJoint for Python or MATLAB\n    + Yatsenko D, Reimer J, Ecker AS, Walker EY, Sinz F, Berens P, Hoenselaar A, Cotton RJ, Siapas AS, Tolias AS. DataJoint: managing big scientific data using MATLAB or Python. bioRxiv. 2015 Jan 1:031658. doi: https://doi.org/10.1101/031658\n\n    + DataJoint ([RRID:SCR_014543](https://scicrunch.org/resolver/SCR_014543)) - DataJoint for `<Select Python or MATLAB>` (version `<Enter version number>`)\n\n+ DataJoint Elements\n    + Yatsenko D, Nguyen T, Shen S, Gunalan K, Turner CA, Guzman R, Sasaki M, Sitonic D, Reimer J, Walker EY, Tolias AS. DataJoint Elements: Data Workflows for Neurophysiology. bioRxiv. 2021 Jan 1. doi: https://doi.org/10.1101/2021.03.30.437358\n\n    + DataJoint Elements ([RRID:SCR_021894](https://scicrunch.org/resolver/SCR_021894)) - Element Event (version `<Enter version number>`)\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "DataJoint Elements for Trialized Experiments",
    "version": "0.2.3",
    "project_urls": {
        "Homepage": "https://github.com/datajoint/element-event"
    },
    "split_keywords": [
        "neuroscience",
        "behavior",
        "bpod",
        "trials",
        "datajoint"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "617d3d019bdf04bec2a84f806fba68b59aeece2256bbba32e0e716c0b2f1b453",
                "md5": "173583c9506e7e76e2b1f4a6d3a6b83c",
                "sha256": "b84d74e6c7e48a00e157df5f2764202e632d33d51ccee0f5716f3d48267197dd"
            },
            "downloads": -1,
            "filename": "element_event-0.2.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "173583c9506e7e76e2b1f4a6d3a6b83c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 8857,
            "upload_time": "2023-06-21T01:54:40",
            "upload_time_iso_8601": "2023-06-21T01:54:40.374750Z",
            "url": "https://files.pythonhosted.org/packages/61/7d/3d019bdf04bec2a84f806fba68b59aeece2256bbba32e0e716c0b2f1b453/element_event-0.2.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "090f088fdd1c49db052f94dd2b728256967d5618cc61586ef2c773226d9415dc",
                "md5": "837a44dc0c54697f24ee66ef72187ccf",
                "sha256": "f0ac7e14d3b581f87714b5848827be85a04b1562a03bdc14955ca3dcadd150f0"
            },
            "downloads": -1,
            "filename": "element-event-0.2.3.tar.gz",
            "has_sig": false,
            "md5_digest": "837a44dc0c54697f24ee66ef72187ccf",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 9085,
            "upload_time": "2023-06-21T01:54:41",
            "upload_time_iso_8601": "2023-06-21T01:54:41.758483Z",
            "url": "https://files.pythonhosted.org/packages/09/0f/088fdd1c49db052f94dd2b728256967d5618cc61586ef2c773226d9415dc/element-event-0.2.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-21 01:54:41",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "datajoint",
    "github_project": "element-event",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "element-event"
}
        
Elapsed time: 0.18370s