[](https://elpigraph-python.readthedocs.io/en/latest/?badge=latest)
[](https://github.com/j-bac/elpigraph-python/blob/master/LICENSE)
[](https://doi.org/10.3390/e22030296)
Description
===========
This package provides a Python implementation of the ElPiGraph algorithm with cpu and gpu support. Usage is explained in the [documentation](https://elpigraph-python.readthedocs.io/en/latest/) and a
self-contained description of the algorithm is available
[here](https://github.com/auranic/Elastic-principal-graphs/blob/master/ElPiGraph_Methods.pdf)
or in the [paper](https://www.mdpi.com/1099-4300/22/3/296)
It replicates the [R implementation](https://github.com/j-bac/ElPiGraph.R),
coded by [Luca Albergante](https://github.com/Albluca) and should return exactly the same results. Please open an issue if you do notice different output. Differences between the two versions are detailed in [differences.md](differences.md). This package extends initial work by [Louis Faure](https://github.com/LouisFaure/ElPiGraph.P) and [Alexis Martin](https://github.com/AlexiMartin/ElPiGraph.P).
A native MATLAB implementation of the algorithm (coded by [Andrei
Zinovyev](https://github.com/auranic/) and [Evgeny
Mirkes](https://github.com/Mirkes)) is also
[available](https://github.com/auranic/Elastic-principal-graphs)
Requirements
============
Requirements are listed in requirements.txt. In addition, to enable gpu support cupy is needed:
https://docs-cupy.chainer.org/en/stable/install.html
Installation
====================
```bash
git clone https://github.com/j-bac/elpigraph-python.git
cd elpigraph
pip install .
```
or
```bash
pip install elpigraph-python
```
Citation
========
When using this package, please cite our [paper](https://www.mdpi.com/1099-4300/22/3/296):
Albergante, L. et al . Robust and Scalable Learning of Complex Intrinsic Dataset Geometry via ElPiGraph (2020)
Raw data
{
"_id": null,
"home_page": "https://github.com/j-bac/elpigraph-python",
"name": "elpigraph-python",
"maintainer": "Jonathan Bac",
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "machine_learning graphs dimension_reduction single_cell",
"author": null,
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/6d/3d/20207708503fc6be4eeb9c8f987cd70cb4ddf444f6b3dc5a57fb0191b636/elpigraph-python-0.3.2.tar.gz",
"platform": null,
"description": "[](https://elpigraph-python.readthedocs.io/en/latest/?badge=latest)\n[](https://github.com/j-bac/elpigraph-python/blob/master/LICENSE)\n[](https://doi.org/10.3390/e22030296)\n\nDescription\n===========\n\nThis package provides a Python implementation of the ElPiGraph algorithm with cpu and gpu support. Usage is explained in the [documentation](https://elpigraph-python.readthedocs.io/en/latest/) and a\nself-contained description of the algorithm is available\n[here](https://github.com/auranic/Elastic-principal-graphs/blob/master/ElPiGraph_Methods.pdf)\nor in the [paper](https://www.mdpi.com/1099-4300/22/3/296)\n\nIt replicates the [R implementation](https://github.com/j-bac/ElPiGraph.R),\ncoded by [Luca Albergante](https://github.com/Albluca) and should return exactly the same results. Please open an issue if you do notice different output. Differences between the two versions are detailed in [differences.md](differences.md). This package extends initial work by [Louis Faure](https://github.com/LouisFaure/ElPiGraph.P) and [Alexis Martin](https://github.com/AlexiMartin/ElPiGraph.P).\n\nA native MATLAB implementation of the algorithm (coded by [Andrei\nZinovyev](https://github.com/auranic/) and [Evgeny\nMirkes](https://github.com/Mirkes)) is also\n[available](https://github.com/auranic/Elastic-principal-graphs)\n\nRequirements\n============\n\nRequirements are listed in requirements.txt. In addition, to enable gpu support cupy is needed:\nhttps://docs-cupy.chainer.org/en/stable/install.html\n\nInstallation\n====================\n```bash\ngit clone https://github.com/j-bac/elpigraph-python.git\ncd elpigraph\npip install .\n```\nor\n\n```bash\npip install elpigraph-python\n```\n\nCitation\n========\n\nWhen using this package, please cite our [paper](https://www.mdpi.com/1099-4300/22/3/296):\nAlbergante, L. et al . Robust and Scalable Learning of Complex Intrinsic Dataset Geometry via ElPiGraph (2020)\n\n\n",
"bugtrack_url": null,
"license": null,
"summary": null,
"version": "0.3.2",
"project_urls": {
"Bug Reports": "https://github.com/j-bac/elpigraph-python/issues",
"Homepage": "https://github.com/j-bac/elpigraph-python",
"Source": "https://github.com/j-bac/elpigraph-python/"
},
"split_keywords": [
"machine_learning",
"graphs",
"dimension_reduction",
"single_cell"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "198250b03ed1b50179a153f1f02b44ff21a9e9727e9010984b9025f2a73d1cec",
"md5": "b599e0d19fd43cd1f3a2b2253ed122f6",
"sha256": "e31826993498eb0d1a1930c750dd9617482722124338508101b3e2fc96feb5be"
},
"downloads": -1,
"filename": "elpigraph_python-0.3.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b599e0d19fd43cd1f3a2b2253ed122f6",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 111050,
"upload_time": "2024-09-29T08:14:09",
"upload_time_iso_8601": "2024-09-29T08:14:09.923242Z",
"url": "https://files.pythonhosted.org/packages/19/82/50b03ed1b50179a153f1f02b44ff21a9e9727e9010984b9025f2a73d1cec/elpigraph_python-0.3.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6d3d20207708503fc6be4eeb9c8f987cd70cb4ddf444f6b3dc5a57fb0191b636",
"md5": "9de75d36c8de9fc5c5883742bda6da9b",
"sha256": "85ee3a8a3231f8d3dd4dc37a6c1de238d2bf9aa160910dd0413ba34a35ed5eed"
},
"downloads": -1,
"filename": "elpigraph-python-0.3.2.tar.gz",
"has_sig": false,
"md5_digest": "9de75d36c8de9fc5c5883742bda6da9b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 680760,
"upload_time": "2024-09-29T08:14:31",
"upload_time_iso_8601": "2024-09-29T08:14:31.835437Z",
"url": "https://files.pythonhosted.org/packages/6d/3d/20207708503fc6be4eeb9c8f987cd70cb4ddf444f6b3dc5a57fb0191b636/elpigraph-python-0.3.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-29 08:14:31",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "j-bac",
"github_project": "elpigraph-python",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"requirements": [],
"lcname": "elpigraph-python"
}