elpv-dataset


Nameelpv-dataset JSON
Version 1.0.0.post1 PyPI version JSON
download
home_pageNone
SummaryA dataset of functional and defective solar cells extracted from EL images of solar modules
upload_time2024-10-13 17:54:26
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseNone
keywords photovoltaic solar cells solar energy
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # A Benchmark for Visual Identification of Defective Solar Cells in Electroluminescence Imagery

[![PyPI - Version](https://img.shields.io/pypi/v/elpv-dataset.svg)](https://pypi.org/project/elpv-dataset)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/elpv-dataset.svg)](https://pypi.org/project/elpv-dataset)

This repository provides a dataset of solar cell images extracted from
high-resolution electroluminescence images of photovoltaic modules.

![An overview of images in the dataset. The darker the red is, the higher is the
likelihood of a defect in the solar cell overlayed by the corresponding color.](./doc/images/overview.jpg)

## The Dataset

The dataset contains 2,624 samples of 300x300 pixels 8-bit grayscale images of
functional and defective solar cells with varying degree of degradations
extracted from 44 different solar modules. The defects in the annotated images
are either of intrinsic or extrinsic type and are known to reduce the power
efficiency of solar modules.

All images are normalized with respect to size and perspective.
Additionally, any distortion induced by the camera lens used to capture the EL images was
eliminated prior to solar cell extraction.

## Annotations

Every image is annotated with a defect probability (a floating point value
between 0 and 1) and the type of the solar module (either mono- or
polycrystalline) the solar cell image was originally extracted from.

The individual images are stored in the `images` directory and the corresponding
annotations in `labels.csv`.

## Usage

Install the Python package
```console
pip install elpv-dataset
```

and load the images and the corresponding annotations as follows:

```python
from elpv_dataset.utils import load_dataset
images, proba, types = load_dataset()
```

## Citing

If you use this dataset in scientific context, please cite the following
publications:

> Buerhop-Lutz, C.; Deitsch, S.; Maier, A.; Gallwitz, F.; Berger, S.; Doll, B.; Hauch, J.; Camus, C. & Brabec, C. J. A Benchmark for Visual Identification of Defective Solar Cells in Electroluminescence Imagery. European PV Solar Energy Conference and Exhibition (EU PVSEC), 2018. DOI: [10.4229/35thEUPVSEC20182018-5CV.3.15](http://dx.doi.org/10.4229/35thEUPVSEC20182018-5CV.3.15)

> Deitsch, S., Buerhop-Lutz, C., Sovetkin, E., Steland, A., Maier, A., Gallwitz, F., & Riess, C. (2021). Segmentation of photovoltaic module cells in uncalibrated electroluminescence images. Machine Vision and Applications, 32(4). DOI: [10.1007/s00138-021-01191-9](https://doi.org/10.1007/s00138-021-01191-9)

> Deitsch, S.; Christlein, V.; Berger, S.; Buerhop-Lutz, C.; Maier, A.; Gallwitz, F. & Riess, C. Automatic classification of defective photovoltaic module cells in electroluminescence images. Solar Energy, Elsevier BV, 2019, 185, 455-468. DOI: [10.1016/j.solener.2019.02.067](http://dx.doi.org/10.1016/j.solener.2019.02.067)

BibTeX details:

<details>

```bibtex

@InProceedings{Buerhop2018,
  author    = {Buerhop-Lutz, Claudia and Deitsch, Sergiu and Maier, Andreas and Gallwitz, Florian and Berger, Stephan and Doll, Bernd and Hauch, Jens and Camus, Christian and Brabec, Christoph J.},
  title     = {A Benchmark for Visual Identification of Defective Solar Cells in Electroluminescence Imagery},
  booktitle = {European PV Solar Energy Conference and Exhibition (EU PVSEC)},
  year      = {2018},
  eventdate = {2018-09-24/2018-09-28},
  venue     = {Brussels, Belgium},
  doi       = {10.4229/35thEUPVSEC20182018-5CV.3.15},
}

@Article{Deitsch2021,
  author       = {Deitsch, Sergiu and Buerhop-Lutz, Claudia and Sovetkin, Evgenii and Steland, Ansgar and Maier, Andreas and Gallwitz, Florian and Riess, Christian},
  date         = {2021},
  journaltitle = {Machine Vision and Applications},
  title        = {Segmentation of photovoltaic module cells in uncalibrated electroluminescence images},
  doi          = {10.1007/s00138-021-01191-9},
  issn         = {1432-1769},
  number       = {4},
  volume       = {32},
}

@Article{Deitsch2019,
  author    = {Sergiu Deitsch and Vincent Christlein and Stephan Berger and Claudia Buerhop-Lutz and Andreas Maier and Florian Gallwitz and Christian Riess},
  title     = {Automatic classification of defective photovoltaic module cells in electroluminescence images},
  journal   = {Solar Energy},
  year      = {2019},
  volume    = {185},
  pages     = {455--468},
  month     = jun,
  issn      = {0038-092X},
  doi       = {10.1016/j.solener.2019.02.067},
  publisher = {Elsevier {BV}},
}
```
</details>

## License

<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.

For commercial use, please contact us for further information.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "elpv-dataset",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "photovoltaic, solar cells, solar energy",
    "author": null,
    "author_email": "Sergiu Deitsch <sergiu.deitsch@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/d0/71/f4f3d967ac06c3ceafc95fb6309b15cb32ae3742b3c379b511f93b0731da/elpv_dataset-1.0.0.post1.tar.gz",
    "platform": null,
    "description": "# A Benchmark for Visual Identification of Defective Solar Cells in Electroluminescence Imagery\n\n[![PyPI - Version](https://img.shields.io/pypi/v/elpv-dataset.svg)](https://pypi.org/project/elpv-dataset)\n[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/elpv-dataset.svg)](https://pypi.org/project/elpv-dataset)\n\nThis repository provides a dataset of solar cell images extracted from\nhigh-resolution electroluminescence images of photovoltaic modules.\n\n![An overview of images in the dataset. The darker the red is, the higher is the\nlikelihood of a defect in the solar cell overlayed by the corresponding color.](./doc/images/overview.jpg)\n\n## The Dataset\n\nThe dataset contains 2,624 samples of 300x300 pixels 8-bit grayscale images of\nfunctional and defective solar cells with varying degree of degradations\nextracted from 44 different solar modules. The defects in the annotated images\nare either of intrinsic or extrinsic type and are known to reduce the power\nefficiency of solar modules.\n\nAll images are normalized with respect to size and perspective.\nAdditionally, any distortion induced by the camera lens used to capture the EL images was\neliminated prior to solar cell extraction.\n\n## Annotations\n\nEvery image is annotated with a defect probability (a floating point value\nbetween 0 and 1) and the type of the solar module (either mono- or\npolycrystalline) the solar cell image was originally extracted from.\n\nThe individual images are stored in the `images` directory and the corresponding\nannotations in `labels.csv`.\n\n## Usage\n\nInstall the Python package\n```console\npip install elpv-dataset\n```\n\nand load the images and the corresponding annotations as follows:\n\n```python\nfrom elpv_dataset.utils import load_dataset\nimages, proba, types = load_dataset()\n```\n\n## Citing\n\nIf you use this dataset in scientific context, please cite the following\npublications:\n\n> Buerhop-Lutz, C.; Deitsch, S.; Maier, A.; Gallwitz, F.; Berger, S.; Doll, B.; Hauch, J.; Camus, C. & Brabec, C. J. A Benchmark for Visual Identification of Defective Solar Cells in Electroluminescence Imagery. European PV Solar Energy Conference and Exhibition (EU PVSEC), 2018. DOI: [10.4229/35thEUPVSEC20182018-5CV.3.15](http://dx.doi.org/10.4229/35thEUPVSEC20182018-5CV.3.15)\n\n> Deitsch, S., Buerhop-Lutz, C., Sovetkin, E., Steland, A., Maier, A., Gallwitz, F., & Riess, C. (2021). Segmentation of photovoltaic module cells in uncalibrated electroluminescence images. Machine Vision and Applications, 32(4). DOI: [10.1007/s00138-021-01191-9](https://doi.org/10.1007/s00138-021-01191-9)\n\n> Deitsch, S.; Christlein, V.; Berger, S.; Buerhop-Lutz, C.; Maier, A.; Gallwitz, F. & Riess, C. Automatic classification of defective photovoltaic module cells in electroluminescence images. Solar Energy, Elsevier BV, 2019, 185, 455-468. DOI: [10.1016/j.solener.2019.02.067](http://dx.doi.org/10.1016/j.solener.2019.02.067)\n\nBibTeX details:\n\n<details>\n\n```bibtex\n\n@InProceedings{Buerhop2018,\n  author    = {Buerhop-Lutz, Claudia and Deitsch, Sergiu and Maier, Andreas and Gallwitz, Florian and Berger, Stephan and Doll, Bernd and Hauch, Jens and Camus, Christian and Brabec, Christoph J.},\n  title     = {A Benchmark for Visual Identification of Defective Solar Cells in Electroluminescence Imagery},\n  booktitle = {European PV Solar Energy Conference and Exhibition (EU PVSEC)},\n  year      = {2018},\n  eventdate = {2018-09-24/2018-09-28},\n  venue     = {Brussels, Belgium},\n  doi       = {10.4229/35thEUPVSEC20182018-5CV.3.15},\n}\n\n@Article{Deitsch2021,\n  author       = {Deitsch, Sergiu and Buerhop-Lutz, Claudia and Sovetkin, Evgenii and Steland, Ansgar and Maier, Andreas and Gallwitz, Florian and Riess, Christian},\n  date         = {2021},\n  journaltitle = {Machine Vision and Applications},\n  title        = {Segmentation of photovoltaic module cells in uncalibrated electroluminescence images},\n  doi          = {10.1007/s00138-021-01191-9},\n  issn         = {1432-1769},\n  number       = {4},\n  volume       = {32},\n}\n\n@Article{Deitsch2019,\n  author    = {Sergiu Deitsch and Vincent Christlein and Stephan Berger and Claudia Buerhop-Lutz and Andreas Maier and Florian Gallwitz and Christian Riess},\n  title     = {Automatic classification of defective photovoltaic module cells in electroluminescence images},\n  journal   = {Solar Energy},\n  year      = {2019},\n  volume    = {185},\n  pages     = {455--468},\n  month     = jun,\n  issn      = {0038-092X},\n  doi       = {10.1016/j.solener.2019.02.067},\n  publisher = {Elsevier {BV}},\n}\n```\n</details>\n\n## License\n\n<a rel=\"license\" href=\"http://creativecommons.org/licenses/by-nc-sa/4.0/\"><img alt=\"Creative Commons License\" style=\"border-width:0\" src=\"https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png\" /></a><br />This work is licensed under a <a rel=\"license\" href=\"http://creativecommons.org/licenses/by-nc-sa/4.0/\">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.\n\nFor commercial use, please contact us for further information.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A dataset of functional and defective solar cells extracted from EL images of solar modules",
    "version": "1.0.0.post1",
    "project_urls": {
        "Documentation": "https://github.com/zae-bayern/elpv-dataset#readme",
        "Issues": "https://github.com/zae-bayern/elpv-dataset/issues",
        "Source": "https://github.com/zae-bayern/elpv-dataset"
    },
    "split_keywords": [
        "photovoltaic",
        " solar cells",
        " solar energy"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f33f22e4483e0aa5bcc4295751e1d55112481991ca64cf97e82e88bdcb1f0afe",
                "md5": "59ce39e42ef4ffb70979f462ec8e529e",
                "sha256": "85e31c1126ee9b48e62d3a0232c58f58b2d189b0814a45c13642fa0415af4a4c"
            },
            "downloads": -1,
            "filename": "elpv_dataset-1.0.0.post1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "59ce39e42ef4ffb70979f462ec8e529e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 90801454,
            "upload_time": "2024-10-13T17:54:51",
            "upload_time_iso_8601": "2024-10-13T17:54:51.991593Z",
            "url": "https://files.pythonhosted.org/packages/f3/3f/22e4483e0aa5bcc4295751e1d55112481991ca64cf97e82e88bdcb1f0afe/elpv_dataset-1.0.0.post1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d071f4f3d967ac06c3ceafc95fb6309b15cb32ae3742b3c379b511f93b0731da",
                "md5": "5d679aac79a63eb9ec5878ff2113f006",
                "sha256": "bb8df267737233a0e5c250ef05ea7594b1d128b35e3a66de4801a62bc6452c97"
            },
            "downloads": -1,
            "filename": "elpv_dataset-1.0.0.post1.tar.gz",
            "has_sig": false,
            "md5_digest": "5d679aac79a63eb9ec5878ff2113f006",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 92957815,
            "upload_time": "2024-10-13T17:54:26",
            "upload_time_iso_8601": "2024-10-13T17:54:26.105662Z",
            "url": "https://files.pythonhosted.org/packages/d0/71/f4f3d967ac06c3ceafc95fb6309b15cb32ae3742b3c379b511f93b0731da/elpv_dataset-1.0.0.post1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-13 17:54:26",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "zae-bayern",
    "github_project": "elpv-dataset#readme",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "elpv-dataset"
}
        
Elapsed time: 3.93643s