# embed
A stable, blazing fast and easy-to-use inference library with a focus on a sync-to-async API
[![ci][ci-shield]][ci-url]
[![Downloads][pepa-shield]][pepa-url]
## Installation
```bash
pip install embed
```
## Why embed?
Embed makes it easy to load any embedding, classification and reranking models from Huggingface.
It leverages [Infinity](https://github.com/michaelfeil/infinity) as backend for async computation, batching, and Flash-Attention-2.
![CPU Benchmark Diagram](docs/l4_cpu.png)
Benchmarking on an Nvidia-L4 instance. Note: CPU uses bert-small, CUDA uses Bert-large. [Methodology](https://michaelfeil.eu/infinity/0.0.51/benchmarking/).
```python
from embed import BatchedInference
from concurrent.futures import Future
# Run any model
register = BatchedInference(
model_id=[
# sentence-embeddings
"michaelfeil/bge-small-en-v1.5",
# sentence-embeddings and image-embeddings
"jinaai/jina-clip-v1",
# classification models
"philschmid/tiny-bert-sst2-distilled",
# rerankers
"mixedbread-ai/mxbai-rerank-xsmall-v1",
],
# engine to `torch` or `optimum`
engine="torch",
# device `cuda` (Nvidia/AMD) or `cpu`
device="cpu",
)
sentences = ["Paris is in France.", "Berlin is in Germany.", "A image of two cats."]
images = ["http://images.cocodataset.org/val2017/000000039769.jpg"]
question = "Where is Paris?"
future: "Future" = register.embed(
sentences=sentences, model_id="michaelfeil/bge-small-en-v1.5"
)
future.result()
register.rerank(
query=question, docs=sentences, model_id="mixedbread-ai/mxbai-rerank-xsmall-v1"
)
register.classify(model_id="philschmid/tiny-bert-sst2-distilled", sentences=sentences)
register.image_embed(model_id="jinaai/jina-clip-v1", images=images)
# manually stop the register upon termination to free model memory.
register.stop()
```
All functions return `Futures(vector_embedding, token_usage)`, enables you to `wait` for them and removes batching logic from your code.
```python
>>> embedding_fut = register.embed(sentences=sentences, model_id="michaelfeil/bge-small-en-v1.5")
>>> print(embedding_fut)
<Future at 0x7fa0e97e8a60 state=pending>
>>> time.sleep(1) and print(embedding_fut)
<Future at 0x7fa0e97e9c30 state=finished returned tuple>
>>> embedding_fut.result()
([array([-3.35943862e-03, ..., -3.22808176e-02], dtype=float32)], 19)
```
# Licence and Contributions
embed is licensed as MIT. All contribrutions need to adhere to the MIT License. Contributions are welcome.
<!-- MARKDOWN LINKS & IMAGES -->
<!-- https://www.markdownguide.org/basic-syntax/#reference-style-links -->
[contributors-shield]: https://img.shields.io/github/contributors/michaelfeil/embed.svg?style=for-the-badge
[contributors-url]: https://github.com/michaelfeil/embed/graphs/contributors
[forks-shield]: https://img.shields.io/github/forks/michaelfeil/embed.svg?style=for-the-badge
[forks-url]: https://github.com/michaelfeil/embed/network/members
[stars-shield]: https://img.shields.io/github/stars/michaelfeil/embed.svg?style=for-the-badge
[stars-url]: https://github.com/michaelfeil/embed/stargazers
[issues-shield]: https://img.shields.io/github/issues/michaelfeil/embed.svg?style=for-the-badge
[issues-url]: https://github.com/michaelfeil/embed/issues
[license-shield]: https://img.shields.io/github/license/michaelfeil/embed.svg?style=for-the-badge
[license-url]: https://github.com/michaelfeil/embed/blob/master/LICENSE.txt
[pepa-shield]: https://static.pepy.tech/badge/embed
[pepa-url]: https://www.pepy.tech/projects/embed
[ci-shield]: https://github.com/michaelfeil/infinity/actions/workflows/ci.yaml/badge.svg
[ci-url]: https://github.com/michaelfeil/infinity/actions
Raw data
{
"_id": null,
"home_page": "https://github.com/michaelfeil/infinity",
"name": "embed",
"maintainer": null,
"docs_url": null,
"requires_python": "<4,>=3.9",
"maintainer_email": null,
"keywords": "vector, embedding, neural, search, sentence-transformers",
"author": "michaelfeil",
"author_email": "me@michaelfeil.eu",
"download_url": "https://files.pythonhosted.org/packages/49/98/c5face22698b98382999c90ed1a583cc738759056767caa5099cd361fbe4/embed-0.3.0.tar.gz",
"platform": null,
"description": "# embed\nA stable, blazing fast and easy-to-use inference library with a focus on a sync-to-async API\n\n[![ci][ci-shield]][ci-url]\n[![Downloads][pepa-shield]][pepa-url]\n\n## Installation\n```bash\npip install embed\n```\n\n## Why embed?\n\nEmbed makes it easy to load any embedding, classification and reranking models from Huggingface. \nIt leverages [Infinity](https://github.com/michaelfeil/infinity) as backend for async computation, batching, and Flash-Attention-2.\n\n![CPU Benchmark Diagram](docs/l4_cpu.png)\nBenchmarking on an Nvidia-L4 instance. Note: CPU uses bert-small, CUDA uses Bert-large. [Methodology](https://michaelfeil.eu/infinity/0.0.51/benchmarking/).\n\n```python\nfrom embed import BatchedInference\nfrom concurrent.futures import Future\n\n# Run any model\nregister = BatchedInference(\n model_id=[\n # sentence-embeddings\n \"michaelfeil/bge-small-en-v1.5\",\n # sentence-embeddings and image-embeddings\n \"jinaai/jina-clip-v1\",\n # classification models\n \"philschmid/tiny-bert-sst2-distilled\",\n # rerankers\n \"mixedbread-ai/mxbai-rerank-xsmall-v1\",\n ],\n # engine to `torch` or `optimum`\n engine=\"torch\",\n # device `cuda` (Nvidia/AMD) or `cpu`\n device=\"cpu\",\n)\n\nsentences = [\"Paris is in France.\", \"Berlin is in Germany.\", \"A image of two cats.\"]\nimages = [\"http://images.cocodataset.org/val2017/000000039769.jpg\"]\nquestion = \"Where is Paris?\"\n\nfuture: \"Future\" = register.embed(\n sentences=sentences, model_id=\"michaelfeil/bge-small-en-v1.5\"\n)\nfuture.result()\nregister.rerank(\n query=question, docs=sentences, model_id=\"mixedbread-ai/mxbai-rerank-xsmall-v1\"\n)\nregister.classify(model_id=\"philschmid/tiny-bert-sst2-distilled\", sentences=sentences)\nregister.image_embed(model_id=\"jinaai/jina-clip-v1\", images=images)\n\n# manually stop the register upon termination to free model memory.\nregister.stop()\n```\n\nAll functions return `Futures(vector_embedding, token_usage)`, enables you to `wait` for them and removes batching logic from your code.\n\n```python\n>>> embedding_fut = register.embed(sentences=sentences, model_id=\"michaelfeil/bge-small-en-v1.5\")\n>>> print(embedding_fut)\n<Future at 0x7fa0e97e8a60 state=pending>\n>>> time.sleep(1) and print(embedding_fut)\n<Future at 0x7fa0e97e9c30 state=finished returned tuple>\n>>> embedding_fut.result()\n([array([-3.35943862e-03, ..., -3.22808176e-02], dtype=float32)], 19)\n```\n\n# Licence and Contributions\nembed is licensed as MIT. All contribrutions need to adhere to the MIT License. Contributions are welcome.\n\n\n<!-- MARKDOWN LINKS & IMAGES -->\n<!-- https://www.markdownguide.org/basic-syntax/#reference-style-links -->\n[contributors-shield]: https://img.shields.io/github/contributors/michaelfeil/embed.svg?style=for-the-badge\n[contributors-url]: https://github.com/michaelfeil/embed/graphs/contributors\n[forks-shield]: https://img.shields.io/github/forks/michaelfeil/embed.svg?style=for-the-badge\n[forks-url]: https://github.com/michaelfeil/embed/network/members\n[stars-shield]: https://img.shields.io/github/stars/michaelfeil/embed.svg?style=for-the-badge\n[stars-url]: https://github.com/michaelfeil/embed/stargazers\n[issues-shield]: https://img.shields.io/github/issues/michaelfeil/embed.svg?style=for-the-badge\n[issues-url]: https://github.com/michaelfeil/embed/issues\n[license-shield]: https://img.shields.io/github/license/michaelfeil/embed.svg?style=for-the-badge\n[license-url]: https://github.com/michaelfeil/embed/blob/master/LICENSE.txt\n[pepa-shield]: https://static.pepy.tech/badge/embed\n[pepa-url]: https://www.pepy.tech/projects/embed\n[ci-shield]: https://github.com/michaelfeil/infinity/actions/workflows/ci.yaml/badge.svg\n[ci-url]: https://github.com/michaelfeil/infinity/actions\n",
"bugtrack_url": null,
"license": null,
"summary": "A stable, fast and easy-to-use inference library with a focus on a sync-to-async API",
"version": "0.3.0",
"project_urls": {
"Homepage": "https://github.com/michaelfeil/infinity",
"Repository": "https://github.com/michaelfeil/infinity"
},
"split_keywords": [
"vector",
" embedding",
" neural",
" search",
" sentence-transformers"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "99ab50a69429cd643732d206cc822439f583985378e3a43c40480e2b357596c5",
"md5": "183b065128e43e3568d7a910bbd03ed8",
"sha256": "6cd08ba00e69a2c84d101a5550a5d66fb45e06c292b606cb6a8fbb3f30e3beaf"
},
"downloads": -1,
"filename": "embed-0.3.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "183b065128e43e3568d7a910bbd03ed8",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4,>=3.9",
"size": 4722,
"upload_time": "2024-09-24T06:04:13",
"upload_time_iso_8601": "2024-09-24T06:04:13.050991Z",
"url": "https://files.pythonhosted.org/packages/99/ab/50a69429cd643732d206cc822439f583985378e3a43c40480e2b357596c5/embed-0.3.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4998c5face22698b98382999c90ed1a583cc738759056767caa5099cd361fbe4",
"md5": "6034620bc07d1b97dd976c8dd9377a8c",
"sha256": "bd6c88f220c41125842d57a0d80279c944b097e9333bb1f891dab7118870c38d"
},
"downloads": -1,
"filename": "embed-0.3.0.tar.gz",
"has_sig": false,
"md5_digest": "6034620bc07d1b97dd976c8dd9377a8c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4,>=3.9",
"size": 4240,
"upload_time": "2024-09-24T06:04:14",
"upload_time_iso_8601": "2024-09-24T06:04:14.021011Z",
"url": "https://files.pythonhosted.org/packages/49/98/c5face22698b98382999c90ed1a583cc738759056767caa5099cd361fbe4/embed-0.3.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-24 06:04:14",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "michaelfeil",
"github_project": "infinity",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "embed"
}