embedbase-qdrant


Nameembedbase-qdrant JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/different-ai/embedbase-qdrant
SummaryEmbedbase + Qdrant - Advanced and high-performant vector similarity search technology in your AI applications.
upload_time2023-05-07 10:49:52
maintainer
docs_urlNone
authorDifferent AI
requires_python>=3.8,<3.12
licenseMIT
keywords embeddings machine learning artificial intelligence
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
<div align="center">
    <h3 align="center">embedbase-qdrant</h3>
    <p align="center">
        <p align="center">
            <a href="https://github.com/different-ai/embedbase">Embedbase</a> + <a href="https://qdrant.tech">Qdrant</a>
            Advanced and high-performant vector similarity search technology in your AI applications 
        </p>
    </p>
    <br>
    ⚠️ Status: Alpha release ⚠️
    <br>
    <br>
    <a href="https://discord.gg/pMNeuGrDky"><img alt="Discord" src="https://img.shields.io/discord/ 1066022656845025310?color=black&style=for-the-badge"></a>
    <a href="https://badge.fury.io/py/embedbase-qdrant"><img alt="PyPI" src="https://img.shields.io/pypi/v/embedbase-qdrant?color=black&style=for-the-badge"></a>
    <br>
    <div align="center">
        <p align="center">
            If you have any feedback or issues, please let us know by opening an issue or contacting us on <a href="https://discord.gg/pMNeuGrDky">discord</a>.
        </p>
        <p align="center">
            Please refer to the <a href="https://docs.embedbase.xyz">documentation</a>
        </p>
    </div>

</div>


## Getting started

To install the Embedbase Qdrant library, run the following command:

```bash
pip install embedbase-qdrant
```

## Quick tour

Let's try Embedbase + Qdrant with an OpenAI `embedder`:

```bash
pip install openai uvicorn
```

```python
import os
import uvicorn
from embedbase import get_app
from embedbase.embedding.openai import Openai
from embedbase_qdrant import Qdrant

# here we use openai to create embeddings and qdrant to store the data
app = get_app().use_embedder(Openai(os.environ["OPENAI_API_KEY"])).use_db(Qdrant()).run()

if __name__ == "__main__":
    uvicorn.run(app)
```

Start a local Qdrant:

```bash
docker-compose up -d
```

Run Embedbase:

```bash
python3 main.py
```

![pika-1683309528643-1x](https://user-images.githubusercontent.com/25003283/236533294-3cd481ac-6437-47b6-ae58-d5a9a6e0e4bf.png)

Check out other [examples](./examples/main.py) and [documentation](https://docs.embedbase.xyz) for more details.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/different-ai/embedbase-qdrant",
    "name": "embedbase-qdrant",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8,<3.12",
    "maintainer_email": "",
    "keywords": "embeddings,machine learning,artificial intelligence",
    "author": "Different AI",
    "author_email": "louis@embedbase.xyz",
    "download_url": "https://files.pythonhosted.org/packages/71/f3/d0a0618b7938aa9b21d6911206cae5fa03470e7f4fb8c3f889a7c8dc67e8/embedbase_qdrant-1.0.1.tar.gz",
    "platform": null,
    "description": "\n<div align=\"center\">\n    <h3 align=\"center\">embedbase-qdrant</h3>\n    <p align=\"center\">\n        <p align=\"center\">\n            <a href=\"https://github.com/different-ai/embedbase\">Embedbase</a> + <a href=\"https://qdrant.tech\">Qdrant</a>\n            Advanced and high-performant vector similarity search technology in your AI applications \n        </p>\n    </p>\n    <br>\n    \u26a0\ufe0f Status: Alpha release \u26a0\ufe0f\n    <br>\n    <br>\n    <a href=\"https://discord.gg/pMNeuGrDky\"><img alt=\"Discord\" src=\"https://img.shields.io/discord/ 1066022656845025310?color=black&style=for-the-badge\"></a>\n    <a href=\"https://badge.fury.io/py/embedbase-qdrant\"><img alt=\"PyPI\" src=\"https://img.shields.io/pypi/v/embedbase-qdrant?color=black&style=for-the-badge\"></a>\n    <br>\n    <div align=\"center\">\n        <p align=\"center\">\n            If you have any feedback or issues, please let us know by opening an issue or contacting us on <a href=\"https://discord.gg/pMNeuGrDky\">discord</a>.\n        </p>\n        <p align=\"center\">\n            Please refer to the <a href=\"https://docs.embedbase.xyz\">documentation</a>\n        </p>\n    </div>\n\n</div>\n\n\n## Getting started\n\nTo install the Embedbase Qdrant library, run the following command:\n\n```bash\npip install embedbase-qdrant\n```\n\n## Quick tour\n\nLet's try Embedbase + Qdrant with an OpenAI `embedder`:\n\n```bash\npip install openai uvicorn\n```\n\n```python\nimport os\nimport uvicorn\nfrom embedbase import get_app\nfrom embedbase.embedding.openai import Openai\nfrom embedbase_qdrant import Qdrant\n\n# here we use openai to create embeddings and qdrant to store the data\napp = get_app().use_embedder(Openai(os.environ[\"OPENAI_API_KEY\"])).use_db(Qdrant()).run()\n\nif __name__ == \"__main__\":\n    uvicorn.run(app)\n```\n\nStart a local Qdrant:\n\n```bash\ndocker-compose up -d\n```\n\nRun Embedbase:\n\n```bash\npython3 main.py\n```\n\n![pika-1683309528643-1x](https://user-images.githubusercontent.com/25003283/236533294-3cd481ac-6437-47b6-ae58-d5a9a6e0e4bf.png)\n\nCheck out other [examples](./examples/main.py) and [documentation](https://docs.embedbase.xyz) for more details.\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Embedbase + Qdrant - Advanced and high-performant vector similarity search technology in your AI applications.",
    "version": "1.0.1",
    "project_urls": {
        "Homepage": "https://github.com/different-ai/embedbase-qdrant",
        "Repository": "https://github.com/different-ai/embedbase-qdrant"
    },
    "split_keywords": [
        "embeddings",
        "machine learning",
        "artificial intelligence"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b39c3f05b3ee392e738373df92abae52446b8362df7b9b39672e9cb8fc1d194c",
                "md5": "ee3965f3deabc2f1c5326e237f506d04",
                "sha256": "f0445db8799feb3cb99584845d267e219cccd9ac5277f3bf63dfa50c8b8aeb23"
            },
            "downloads": -1,
            "filename": "embedbase_qdrant-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ee3965f3deabc2f1c5326e237f506d04",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8,<3.12",
            "size": 4967,
            "upload_time": "2023-05-07T10:49:50",
            "upload_time_iso_8601": "2023-05-07T10:49:50.904391Z",
            "url": "https://files.pythonhosted.org/packages/b3/9c/3f05b3ee392e738373df92abae52446b8362df7b9b39672e9cb8fc1d194c/embedbase_qdrant-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "71f3d0a0618b7938aa9b21d6911206cae5fa03470e7f4fb8c3f889a7c8dc67e8",
                "md5": "7954b3cb883597ded2a4d4737a901636",
                "sha256": "e673a898f25d434e44c299235ec677a26adfbef24e5b0e3b6678c31b87671f4e"
            },
            "downloads": -1,
            "filename": "embedbase_qdrant-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "7954b3cb883597ded2a4d4737a901636",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8,<3.12",
            "size": 5389,
            "upload_time": "2023-05-07T10:49:52",
            "upload_time_iso_8601": "2023-05-07T10:49:52.552423Z",
            "url": "https://files.pythonhosted.org/packages/71/f3/d0a0618b7938aa9b21d6911206cae5fa03470e7f4fb8c3f889a7c8dc67e8/embedbase_qdrant-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-07 10:49:52",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "different-ai",
    "github_project": "embedbase-qdrant",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "embedbase-qdrant"
}
        
Elapsed time: 2.05360s