Name | embedding-atlas JSON |
Version |
0.8.0
JSON |
| download |
home_page | None |
Summary | A tool for visualizing embeddings |
upload_time | 2025-07-30 23:21:56 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.10 |
license | None |
keywords |
embedding
visualization
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Embedding Atlas
A Python package that provides a command line tool to visualize a dataset with embeddings. It also includes a Jupyter widget and a Streamlit widget.
- Documentation: https://apple.github.io/embedding-atlas
- GitHub: https://github.com/apple/embedding-atlas
## Installation
```bash
pip install embedding-atlas
```
and then launch the command line tool:
```bash
embedding-atlas [OPTIONS] INPUTS...
```
## Loading Data
You can load your data in two ways: locally or from Hugging Face.
### Loading Local Data
To get started with your own data, run:
```bash
embedding-atlas path_to_dataset.parquet
```
### Loading Hugging Face Data
You can instead load datasets from Hugging Face:
```bash
embedding-atlas huggingface_org/dataset_name
```
## Visualizing Embedding Projections
To visual embedding projections, pre-compute the X and Y coordinates, and specify the column names with `--x` and `--y`, such as:
```bash
embedding-atlas path_to_dataset.parquet --x projection_x --y projection_y
```
You may use the [SentenceTransformers](https://sbert.net/) package to compute high-dimensional embeddings from text data, and then use the [UMAP](https://umap-learn.readthedocs.io/en/latest/index.html) package to compute 2D projections.
You may also specify a column for pre-computed nearest neighbors:
```bash
embedding-atlas path_to_dataset.parquet --x projection_x --y projection_y --neighbors neighbors
```
The `neighbors` column should have values in the following format: `{"ids": [id1, id2, ...], "distances": [d1, d2, ...]}`.
If this column is specified, you'll be able to see nearest neighbors for a selected point in the tool.
Raw data
{
"_id": null,
"home_page": null,
"name": "embedding-atlas",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "embedding, visualization",
"author": null,
"author_email": "Donghao Ren <donghao.ren@gmail.com>, Halden Lin <halden.lin@gmail.com>, Fred Hohman <fredhohman@apple.com>, Dominik Moritz <domoritz@gmail.com>",
"download_url": null,
"platform": null,
"description": "# Embedding Atlas\n\nA Python package that provides a command line tool to visualize a dataset with embeddings. It also includes a Jupyter widget and a Streamlit widget.\n\n- Documentation: https://apple.github.io/embedding-atlas\n- GitHub: https://github.com/apple/embedding-atlas\n\n## Installation\n\n```bash\npip install embedding-atlas\n```\n\nand then launch the command line tool:\n\n```bash\nembedding-atlas [OPTIONS] INPUTS...\n```\n\n## Loading Data\n\nYou can load your data in two ways: locally or from Hugging Face.\n\n### Loading Local Data\n\nTo get started with your own data, run:\n\n```bash\nembedding-atlas path_to_dataset.parquet\n```\n\n### Loading Hugging Face Data\n\nYou can instead load datasets from Hugging Face:\n\n```bash\nembedding-atlas huggingface_org/dataset_name\n```\n\n## Visualizing Embedding Projections\n\nTo visual embedding projections, pre-compute the X and Y coordinates, and specify the column names with `--x` and `--y`, such as:\n\n```bash\nembedding-atlas path_to_dataset.parquet --x projection_x --y projection_y\n```\n\nYou may use the [SentenceTransformers](https://sbert.net/) package to compute high-dimensional embeddings from text data, and then use the [UMAP](https://umap-learn.readthedocs.io/en/latest/index.html) package to compute 2D projections.\n\nYou may also specify a column for pre-computed nearest neighbors:\n\n```bash\nembedding-atlas path_to_dataset.parquet --x projection_x --y projection_y --neighbors neighbors\n```\n\nThe `neighbors` column should have values in the following format: `{\"ids\": [id1, id2, ...], \"distances\": [d1, d2, ...]}`.\nIf this column is specified, you'll be able to see nearest neighbors for a selected point in the tool.\n",
"bugtrack_url": null,
"license": null,
"summary": "A tool for visualizing embeddings",
"version": "0.8.0",
"project_urls": {
"homepage": "https://apple.github.io/embedding-atlas",
"source": "https://github.com/apple/embedding-atlas"
},
"split_keywords": [
"embedding",
" visualization"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "5389ac58daad4c9f5a08c7579c2faac4a323b5133939be2cb4c4a115332f243c",
"md5": "538472ff69fd193ebb732564ca894b18",
"sha256": "d4d960e34f3128ecb580498d4fcc1704dbefe56eb801f04d8991f0df2bd971d1"
},
"downloads": -1,
"filename": "embedding_atlas-0.8.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "538472ff69fd193ebb732564ca894b18",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 24837597,
"upload_time": "2025-07-30T23:21:56",
"upload_time_iso_8601": "2025-07-30T23:21:56.981612Z",
"url": "https://files.pythonhosted.org/packages/53/89/ac58daad4c9f5a08c7579c2faac4a323b5133939be2cb4c4a115332f243c/embedding_atlas-0.8.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-30 23:21:56",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "apple",
"github_project": "embedding-atlas",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "embedding-atlas"
}