[![DOI](https://zenodo.org/badge/662445885.svg)](https://zenodo.org/badge/latestdoi/662445885)
# emodel-generalisation
Generalisation of neuronal electrical models on a morphological population with Markov Chain Monte-Carlo.
This code accompanies the paper:
[Arnaudon, A., Reva, M., Zbili, M., Markram, H., Van Geit, W., & Kanari, L. (2023). Controlling morpho-electrophysiological variability of neurons with detailed biophysical models. iScience, 2023.](https://www.cell.com/iscience/fulltext/S2589-0042%2823%2902299-X)
## Installation
This code can be installed via [pip](https://pip.pypa.io/en/stable/) from pypi with
```
pip install emodel-generalisation
```
or from github with
```
git clone git@github.com:BlueBrain/emodel-generalisation.git
pip install .
```
## Documentation
The documentation can be found here: https://emodel-generalisation.readthedocs.io/en/latest/
## Code structure
This code contains several modules, the most important are:
* [model](emodel_generalisation/model) contains an adapted version of BlueBrain/BluePyEmodel core functionalities for evaluating electrical models, built on top of BlueBrain/BluePyOpt
* [tasks](emodel_generalisation/tasks) contains the luigi workflows to run MCMC, adapt and generalise electrical model
* [bluecellulab_evaluator](emodel_generalisation/bluecellulab_evaluator.py) contains functions to compute currents with BlueBrain/BlueCelluLab and hoc files of models
* [mcmc](emodel_generalisation/mcmc.py) contains the code to run MCMC sampling of electrical models
* [information](emodel_generalisation/information.py) contains some WIP code to compute information theory measures on sampled electrical models
## Examples
We provide several examples of the main functionalities of the ```emodel-generalisation``` code:
* run MCMC on a simple single compartment model in [examples/mcmc/mcmc_singlecomp](examples/mcmc/mcmc_singlecomp)
* run MCMC on a simple multi-compartment model in [examples/mcmc/mcmc_simple_multicomp](examples/mcmc/mcmc_simple_multicomp)
* run the entire generalisation worklow on a simplified version of the L5PC model of the paper in [examples/workflow](examples/workflow)
* provide all the scripts necessary to reproduce the figures of the paper. For the scripts to run, one has to download the associated dataset on dataverse with the script ```get_data.sh``` in [examples/paper_figures](examples/paper_figures)
## Citation
When you use the ``emodel-generalisation`` code or method for your research, we ask you to [cite](https://www.cell.com/iscience/fulltext/S2589-0042%2823%2902299-X):
> Arnaudon, A., Reva, M., Zbili, M., Markram, H., Van Geit, W., & Kanari, L. (2023). Controlling morpho-electrophysiological variability of neurons with detailed biophysical models. iScience, 2023.
To get this citation in another format, please use the `Cite this repository` button in the sidebar of the [code's github page](https://github.com/BlueBrain/emodel-generalisation).
## Funding & Acknowledgment
The development of this code was supported by funding to the Blue Brain Project, a research
center of the École polytechnique fédérale de Lausanne (EPFL), from the Swiss government’s ETH
Board of the Swiss Federal Institutes of Technology.
For license and authors, see `LICENSE.txt` and `AUTHORS.md` respectively.
Copyright 2022-2023 Blue Brain Project/EPFL
Raw data
{
"_id": null,
"home_page": "https://emodel-generalisation.readthedocs.io",
"name": "emodel-generalisation",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": null,
"author": "Blue Brain Project, EPFL",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/f5/0d/cb7d7e13adbfc490300858dbfeb02352ca262f2fc479b72fd9ed8200f69b/emodel_generalisation-0.2.14.tar.gz",
"platform": null,
"description": "[![DOI](https://zenodo.org/badge/662445885.svg)](https://zenodo.org/badge/latestdoi/662445885)\n\n# emodel-generalisation\n\nGeneralisation of neuronal electrical models on a morphological population with Markov Chain Monte-Carlo.\n\nThis code accompanies the paper:\n\n[Arnaudon, A., Reva, M., Zbili, M., Markram, H., Van Geit, W., & Kanari, L. (2023). Controlling morpho-electrophysiological variability of neurons with detailed biophysical models. iScience, 2023.](https://www.cell.com/iscience/fulltext/S2589-0042%2823%2902299-X)\n\n## Installation\n\nThis code can be installed via [pip](https://pip.pypa.io/en/stable/) from pypi with\n\n```\npip install emodel-generalisation\n```\n\nor from github with\n\n```\ngit clone git@github.com:BlueBrain/emodel-generalisation.git\npip install .\n```\n\n## Documentation\n\nThe documentation can be found here: https://emodel-generalisation.readthedocs.io/en/latest/\n\n## Code structure\n\nThis code contains several modules, the most important are:\n* [model](emodel_generalisation/model) contains an adapted version of BlueBrain/BluePyEmodel core functionalities for evaluating electrical models, built on top of BlueBrain/BluePyOpt\n* [tasks](emodel_generalisation/tasks) contains the luigi workflows to run MCMC, adapt and generalise electrical model\n* [bluecellulab_evaluator](emodel_generalisation/bluecellulab_evaluator.py) contains functions to compute currents with BlueBrain/BlueCelluLab and hoc files of models\n* [mcmc](emodel_generalisation/mcmc.py) contains the code to run MCMC sampling of electrical models\n* [information](emodel_generalisation/information.py) contains some WIP code to compute information theory measures on sampled electrical models\n\n\n## Examples\n\nWe provide several examples of the main functionalities of the ```emodel-generalisation``` code:\n* run MCMC on a simple single compartment model in [examples/mcmc/mcmc_singlecomp](examples/mcmc/mcmc_singlecomp)\n* run MCMC on a simple multi-compartment model in [examples/mcmc/mcmc_simple_multicomp](examples/mcmc/mcmc_simple_multicomp)\n* run the entire generalisation worklow on a simplified version of the L5PC model of the paper in [examples/workflow](examples/workflow)\n* provide all the scripts necessary to reproduce the figures of the paper. For the scripts to run, one has to download the associated dataset on dataverse with the script ```get_data.sh``` in [examples/paper_figures](examples/paper_figures)\n\n\n## Citation\n\nWhen you use the ``emodel-generalisation`` code or method for your research, we ask you to [cite](https://www.cell.com/iscience/fulltext/S2589-0042%2823%2902299-X):\n\n> Arnaudon, A., Reva, M., Zbili, M., Markram, H., Van Geit, W., & Kanari, L. (2023). Controlling morpho-electrophysiological variability of neurons with detailed biophysical models. iScience, 2023.\n\nTo get this citation in another format, please use the `Cite this repository` button in the sidebar of the [code's github page](https://github.com/BlueBrain/emodel-generalisation).\n\n## Funding & Acknowledgment\n\nThe development of this code was supported by funding to the Blue Brain Project, a research\ncenter of the \u00c9cole polytechnique f\u00e9d\u00e9rale de Lausanne (EPFL), from the Swiss government\u2019s ETH\nBoard of the Swiss Federal Institutes of Technology.\n\nFor license and authors, see `LICENSE.txt` and `AUTHORS.md` respectively.\n\nCopyright 2022-2023 Blue Brain Project/EPFL\n",
"bugtrack_url": null,
"license": "GNU General Public License v3.0",
"summary": "Generalisation of neuronal electrical models with MCMC",
"version": "0.2.14",
"project_urls": {
"Homepage": "https://emodel-generalisation.readthedocs.io",
"Source": "https://github.com/BlueBrain/emodel-generalisation",
"Tracker": "https://github.com/BlueBrain/emodel-generalisation/issues"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ef1f8234a1d16c37facefd9baa204f1fa5e6f10be06222456071f75160631fc0",
"md5": "7f84848c1c292c7bc9e3fc09f476632d",
"sha256": "7ef81e6484c39984d2fa076585dc95c3978c1c89009b69c8cd37d777ee750942"
},
"downloads": -1,
"filename": "emodel_generalisation-0.2.14-py3-none-any.whl",
"has_sig": false,
"md5_digest": "7f84848c1c292c7bc9e3fc09f476632d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 134060,
"upload_time": "2024-10-20T19:47:52",
"upload_time_iso_8601": "2024-10-20T19:47:52.281619Z",
"url": "https://files.pythonhosted.org/packages/ef/1f/8234a1d16c37facefd9baa204f1fa5e6f10be06222456071f75160631fc0/emodel_generalisation-0.2.14-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f50dcb7d7e13adbfc490300858dbfeb02352ca262f2fc479b72fd9ed8200f69b",
"md5": "cc72bd50d596ea428b8ce82fa9a9fca9",
"sha256": "6d83176402ae81f3563ac280b9333ad9333ef9c2608fb1af44de8ada4bfa5894"
},
"downloads": -1,
"filename": "emodel_generalisation-0.2.14.tar.gz",
"has_sig": false,
"md5_digest": "cc72bd50d596ea428b8ce82fa9a9fca9",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 18080308,
"upload_time": "2024-10-20T19:47:53",
"upload_time_iso_8601": "2024-10-20T19:47:53.628841Z",
"url": "https://files.pythonhosted.org/packages/f5/0d/cb7d7e13adbfc490300858dbfeb02352ca262f2fc479b72fd9ed8200f69b/emodel_generalisation-0.2.14.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-20 19:47:53",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "BlueBrain",
"github_project": "emodel-generalisation",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"tox": true,
"lcname": "emodel-generalisation"
}