emtable


Nameemtable JSON
Version 0.0.14 PyPI version JSON
download
home_pagehttps://github.com/delarosatrevin/emtable
SummarySimple module to deal with EM tabular data (aka metadata)
upload_time2022-07-25 10:55:10
maintainer
docs_urlNone
authorJ.M. De la Rosa Trevin, Grigory Sharov
requires_python
license
keywords electron-microscopy cryo-em structural-biology image-processing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            =======
emtable
=======

Emtable is a STAR file parser originally developed to simplify and speed up metadata conversion between Scipion and Relion. It is available as a small self-contained Python module (https://pypi.org/project/emtable/) and can be used to manipulate STAR files independently from Scipion.

How to cite
-----------

Please cite the code repository DOI: `10.5281/zenodo.4303966 <https://zenodo.org/record/4303966>`_

Authors
-------

 * Jose Miguel de la Rosa-TrevĂ­n, Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
 * Grigory Sharov, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, England

Testing
-------

``python3 -m unittest discover emtable/tests``

Examples
--------

To start using the package, simply do:

.. code-block:: python

    from emtable import Table

Each table in STAR file usually has a *data\_* prefix. You only need to specify the remaining table name:

``Table(fileName=modelStar, tableName='perframe_bfactors')``

Be aware that from Relion 3.1 particles table name has been changed from "data_Particles" to "data_particles".

Reading
#######

For example, we want to read the whole *rlnMovieFrameNumber* column from modelStar file, table *data_perframe_bfactors*.

The code below will return a list of column values from all rows:

.. code-block:: python

    table = Table(fileName=modelStar, tableName='perframe_bfactors')
    frame = table.getColumnValues('rlnMovieFrameNumber')

We can also iterate over rows from "data_particles" Table:

.. code-block:: python

    table = Table(fileName=dataStar, tableName='particles')
        for row in table:
            print(row.rlnRandomSubset, row.rlnClassNumber)

Alternatively, you can use **iterRows** method which also supports sorting by a column:

.. code-block:: python

    mdIter = Table.iterRows('particles@' + fnStar, key='rlnImageId')

If for some reason you need to clear all rows and keep just the Table structure, use **clearRows()** method on any table.


Writing
#######

If we want to create a new table with 3 pre-defined columns, add rows to it and save as a new file:

.. code-block:: python

    tableShifts = Table(columns=['rlnCoordinateX',
                                 'rlnCoordinateY',
                                 'rlnAutopickFigureOfMerit',
                                 'rlnClassNumber'])
    tableShifts.addRow(1024.54, 2944.54, 0.234, 3)
    tableShifts.addRow(445.45, 2345.54, 0.266, 3)

    tableShifts.write(f, tableName="test", singleRow=False)

*singleRow* is **False** by default. If *singleRow* is **True**, we don't write a *loop_*, just label-value pairs. This is used for "one-column" tables, such as below:


.. code-block:: bash

    data_general

    _rlnImageSizeX                                     3710
    _rlnImageSizeY                                     3838
    _rlnImageSizeZ                                       24
    _rlnMicrographMovieName                    Movies/20170629_00026_frameImage.tiff
    _rlnMicrographGainName                     Movies/gain.mrc
    _rlnMicrographBinning                          1.000000
    _rlnMicrographOriginalPixelSize                0.885000
    _rlnMicrographDoseRate                         1.277000
    _rlnMicrographPreExposure                      0.000000
    _rlnVoltage                                  200.000000
    _rlnMicrographStartFrame                              1
    _rlnMotionModelVersion                                1



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/delarosatrevin/emtable",
    "name": "emtable",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "electron-microscopy cryo-em structural-biology image-processing",
    "author": "J.M. De la Rosa Trevin, Grigory Sharov",
    "author_email": "delarosatrevin@gmail.com, gsharov@mrc-lmb.cam.ac.uk",
    "download_url": "https://files.pythonhosted.org/packages/6a/63/b92c5914e9e607758a7e3c475e0203c7340e006e9532464cc24d4205ad7c/emtable-0.0.14.tar.gz",
    "platform": null,
    "description": "=======\nemtable\n=======\n\nEmtable is a STAR file parser originally developed to simplify and speed up metadata conversion between Scipion and Relion. It is available as a small self-contained Python module (https://pypi.org/project/emtable/) and can be used to manipulate STAR files independently from Scipion.\n\nHow to cite\n-----------\n\nPlease cite the code repository DOI: `10.5281/zenodo.4303966 <https://zenodo.org/record/4303966>`_\n\nAuthors\n-------\n\n * Jose Miguel de la Rosa-Trev\u00edn, Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden\n * Grigory Sharov, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, England\n\nTesting\n-------\n\n``python3 -m unittest discover emtable/tests``\n\nExamples\n--------\n\nTo start using the package, simply do:\n\n.. code-block:: python\n\n    from emtable import Table\n\nEach table in STAR file usually has a *data\\_* prefix. You only need to specify the remaining table name:\n\n``Table(fileName=modelStar, tableName='perframe_bfactors')``\n\nBe aware that from Relion 3.1 particles table name has been changed from \"data_Particles\" to \"data_particles\".\n\nReading\n#######\n\nFor example, we want to read the whole *rlnMovieFrameNumber* column from modelStar file, table *data_perframe_bfactors*.\n\nThe code below will return a list of column values from all rows:\n\n.. code-block:: python\n\n    table = Table(fileName=modelStar, tableName='perframe_bfactors')\n    frame = table.getColumnValues('rlnMovieFrameNumber')\n\nWe can also iterate over rows from \"data_particles\" Table:\n\n.. code-block:: python\n\n    table = Table(fileName=dataStar, tableName='particles')\n        for row in table:\n            print(row.rlnRandomSubset, row.rlnClassNumber)\n\nAlternatively, you can use **iterRows** method which also supports sorting by a column:\n\n.. code-block:: python\n\n    mdIter = Table.iterRows('particles@' + fnStar, key='rlnImageId')\n\nIf for some reason you need to clear all rows and keep just the Table structure, use **clearRows()** method on any table.\n\n\nWriting\n#######\n\nIf we want to create a new table with 3 pre-defined columns, add rows to it and save as a new file:\n\n.. code-block:: python\n\n    tableShifts = Table(columns=['rlnCoordinateX',\n                                 'rlnCoordinateY',\n                                 'rlnAutopickFigureOfMerit',\n                                 'rlnClassNumber'])\n    tableShifts.addRow(1024.54, 2944.54, 0.234, 3)\n    tableShifts.addRow(445.45, 2345.54, 0.266, 3)\n\n    tableShifts.write(f, tableName=\"test\", singleRow=False)\n\n*singleRow* is **False** by default. If *singleRow* is **True**, we don't write a *loop_*, just label-value pairs. This is used for \"one-column\" tables, such as below:\n\n\n.. code-block:: bash\n\n    data_general\n\n    _rlnImageSizeX                                     3710\n    _rlnImageSizeY                                     3838\n    _rlnImageSizeZ                                       24\n    _rlnMicrographMovieName                    Movies/20170629_00026_frameImage.tiff\n    _rlnMicrographGainName                     Movies/gain.mrc\n    _rlnMicrographBinning                          1.000000\n    _rlnMicrographOriginalPixelSize                0.885000\n    _rlnMicrographDoseRate                         1.277000\n    _rlnMicrographPreExposure                      0.000000\n    _rlnVoltage                                  200.000000\n    _rlnMicrographStartFrame                              1\n    _rlnMotionModelVersion                                1\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Simple module to deal with EM tabular data (aka metadata)",
    "version": "0.0.14",
    "split_keywords": [
        "electron-microscopy",
        "cryo-em",
        "structural-biology",
        "image-processing"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "97b833e80fd0fe89fcac5225a763e512",
                "sha256": "7847c7c9454f0e491e36491025cc53302ae9e89cd615f1e4abbebfcbc40a9b43"
            },
            "downloads": -1,
            "filename": "emtable-0.0.14-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "97b833e80fd0fe89fcac5225a763e512",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 21663,
            "upload_time": "2022-07-25T10:55:08",
            "upload_time_iso_8601": "2022-07-25T10:55:08.998285Z",
            "url": "https://files.pythonhosted.org/packages/19/ba/e18bc0351a3692339fa335f04cfaf98e738735641bf2191b969557fca1bc/emtable-0.0.14-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "921629141e3dad2b31f46ce69b4d1943",
                "sha256": "e531cdfb0fe38c9b81ef2cb71503b69a64309652044538f1f1853b43ed52840f"
            },
            "downloads": -1,
            "filename": "emtable-0.0.14.tar.gz",
            "has_sig": false,
            "md5_digest": "921629141e3dad2b31f46ce69b4d1943",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 23531,
            "upload_time": "2022-07-25T10:55:10",
            "upload_time_iso_8601": "2022-07-25T10:55:10.477509Z",
            "url": "https://files.pythonhosted.org/packages/6a/63/b92c5914e9e607758a7e3c475e0203c7340e006e9532464cc24d4205ad7c/emtable-0.0.14.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-07-25 10:55:10",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "delarosatrevin",
    "github_project": "emtable",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "emtable"
}
        
Elapsed time: 0.14674s