endersgame


Nameendersgame JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/microprediction/endersgame
SummaryOnline autonomous time series prediction of near martingales
upload_time2024-10-15 13:18:21
maintainerNone
docs_urlNone
authormicroprediction
requires_pythonNone
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # endersgame ![tests](https://github.com/microprediction/endersgame/actions/workflows/tests.yml/badge.svg)

Utilities to help build `Attackers` that detect small departures from martingality in time-series. 

### About
This package is intended to make life simpler for those participating in an ongoing tournament at [CrunchDAO.com](https://www.crunchdao.com), although it hopefully has independent interest. For instance, you might build on `Attacker` or examples herein to help find signal in your model residuals.  

 - Colab [notebooks](https://github.com/microprediction/endersnotebooks) demonstrating `Attacker`.
 - See the README in [attacker.md](https://github.com/microprediction/endersgame/blob/main/endersgame/attackers/attacker.md).  
 - It's also highly recommended to read the [FAQ.md](https://github.com/microprediction/endersgame/blob/main/endersgame/attackers/FAQ.md).


### Install 
Stable:

     pip install endersgame 

Latest:

     pip install git+https://github.com/microprediction/endersgame.git
 
### Contest 

Play the game! You might win some cash or even have ongoing upside. 

| Contest notebook | Description |
| --- | --- |
| [Mean reversion](https://github.com/crunchdao/quickstarters/blob/master/competitions/mid-one/mean_reversion/mean_reversion.ipynb) | A minimalist contest entry notebook |
| [Mean reversion attacker](https://github.com/microprediction/quickstarters/blob/master/competitions/mid-one/mean_reversion_attacker/mean_reversion_attacker.ipynb) | Illustrates use of the `Attacker` class|
| [Momentum attacker](https://github.com/microprediction/quickstarters/blob/master/competitions/mid-one/momentum_attacker/momentum_attacker.ipynb) | Illustrates use of running calculations |
| [Regression Attacker](https://github.com/microprediction/quickstarters/blob/master/competitions/mid-one/regression_attacker/regression_attacker.ipynb) | Illustrates running regression pattern |


See the  [discord channel](https://discord.gg/NuqJTcYQ2J) and [CrunchDAO.com](https://www.crunchdao.com). 



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/microprediction/endersgame",
    "name": "endersgame",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "microprediction",
    "author_email": "peter.cotton@microprediction.com",
    "download_url": "https://files.pythonhosted.org/packages/8e/05/d6d11bdcde035467d873abbaba4c30e3f1e2c17a2bbdb62f198b3050ac53/endersgame-1.0.1.tar.gz",
    "platform": null,
    "description": "# endersgame ![tests](https://github.com/microprediction/endersgame/actions/workflows/tests.yml/badge.svg)\n\nUtilities to help build `Attackers` that detect small departures from martingality in time-series. \n\n### About\nThis package is intended to make life simpler for those participating in an ongoing tournament at [CrunchDAO.com](https://www.crunchdao.com), although it hopefully has independent interest. For instance, you might build on `Attacker` or examples herein to help find signal in your model residuals.  \n\n - Colab [notebooks](https://github.com/microprediction/endersnotebooks) demonstrating `Attacker`.\n - See the README in [attacker.md](https://github.com/microprediction/endersgame/blob/main/endersgame/attackers/attacker.md).  \n - It's also highly recommended to read the [FAQ.md](https://github.com/microprediction/endersgame/blob/main/endersgame/attackers/FAQ.md).\n\n\n### Install \nStable:\n\n     pip install endersgame \n\nLatest:\n\n     pip install git+https://github.com/microprediction/endersgame.git\n \n### Contest \n\nPlay the game! You might win some cash or even have ongoing upside. \n\n| Contest notebook | Description |\n| --- | --- |\n| [Mean reversion](https://github.com/crunchdao/quickstarters/blob/master/competitions/mid-one/mean_reversion/mean_reversion.ipynb) | A minimalist contest entry notebook |\n| [Mean reversion attacker](https://github.com/microprediction/quickstarters/blob/master/competitions/mid-one/mean_reversion_attacker/mean_reversion_attacker.ipynb) | Illustrates use of the `Attacker` class|\n| [Momentum attacker](https://github.com/microprediction/quickstarters/blob/master/competitions/mid-one/momentum_attacker/momentum_attacker.ipynb) | Illustrates use of running calculations |\n| [Regression Attacker](https://github.com/microprediction/quickstarters/blob/master/competitions/mid-one/regression_attacker/regression_attacker.ipynb) | Illustrates running regression pattern |\n\n\nSee the  [discord channel](https://discord.gg/NuqJTcYQ2J) and [CrunchDAO.com](https://www.crunchdao.com). \n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Online autonomous time series prediction of near martingales",
    "version": "1.0.1",
    "project_urls": {
        "Homepage": "https://github.com/microprediction/endersgame"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b1826ded2c6427b97981e343afd4062b06ce4bae7db5ad97b4a7265fa79dfcd8",
                "md5": "400c4c15b0f586b40573236b14914b49",
                "sha256": "4a99f8df948ae4907b8f83c1707dd10acc3abd4508aba10fa2bf3493d2608d0e"
            },
            "downloads": -1,
            "filename": "endersgame-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "400c4c15b0f586b40573236b14914b49",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 27221,
            "upload_time": "2024-10-15T13:18:19",
            "upload_time_iso_8601": "2024-10-15T13:18:19.579663Z",
            "url": "https://files.pythonhosted.org/packages/b1/82/6ded2c6427b97981e343afd4062b06ce4bae7db5ad97b4a7265fa79dfcd8/endersgame-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8e05d6d11bdcde035467d873abbaba4c30e3f1e2c17a2bbdb62f198b3050ac53",
                "md5": "370e9473ffbf91dde3ab4854ba7fc5a8",
                "sha256": "f1e803f53122b64879e005e809ba9c43f430a524344f47fee62044b6803b72b9"
            },
            "downloads": -1,
            "filename": "endersgame-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "370e9473ffbf91dde3ab4854ba7fc5a8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 18977,
            "upload_time": "2024-10-15T13:18:21",
            "upload_time_iso_8601": "2024-10-15T13:18:21.138443Z",
            "url": "https://files.pythonhosted.org/packages/8e/05/d6d11bdcde035467d873abbaba4c30e3f1e2c17a2bbdb62f198b3050ac53/endersgame-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-15 13:18:21",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "microprediction",
    "github_project": "endersgame",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "endersgame"
}
        
Elapsed time: 0.55730s