Name | energypylinear JSON |
Version |
1.4.0
JSON |
| download |
home_page | None |
Summary | Optimizing energy assets with mixed-integer linear programming. |
upload_time | 2024-06-22 02:31:18 |
maintainer | None |
docs_url | None |
author | Adam Green |
requires_python | <3.13,>=3.10 |
license | GNU GPLv3 |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# energy-py-linear
<img src="./static/coverage.svg"> [](https://mypy-lang.org/)
---
Documentation: [energypylinear.adgefficiency.com](https://energypylinear.adgefficiency.com/latest)
---
A Python library for optimizing energy assets with mixed-integer linear programming:
- electric batteries,
- combined heat & power (CHP) generators,
- electric vehicle smart charging,
- heat pumps,
- renewable (wind & solar) generators.
Assets & sites can be optimized to either maximize profit or minimize carbon emissions, or a user defined custom objective function.
Energy balances are performed on electricity, high, and low temperature heat.
## Setup
Requires Python 3.10+:
```shell-session
$ pip install energypylinear
```
## Quick Start
### Asset API
The asset API allows optimizing a single asset at once:
```python
import energypylinear as epl
# 2.0 MW, 4.0 MWh battery
asset = epl.Battery(
power_mw=2,
capacity_mwh=4,
efficiency_pct=0.9,
electricity_prices=[100.0, 50, 200, -100, 0, 200, 100, -100],
export_electricity_prices=40
)
simulation = asset.optimize()
```
### Site API
The site API allows optimizing multiple assets together:
```python
import energypylinear as epl
assets = [
# 2.0 MW, 4.0 MWh battery
epl.Battery(
power_mw=2.0,
capacity_mwh=4.0
),
# 30 MW open cycle generator
epl.CHP(
electric_power_max_mw=100,
electric_power_min_mw=30,
electric_efficiency_pct=0.4
),
# 2 EV chargers & 4 charge events
epl.EVs(
chargers_power_mw=[100, 100],
charge_events_capacity_mwh=[50, 100, 30, 40],
charge_events=[
[1, 0, 0, 0, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 1, 1],
[0, 1, 0, 0, 0],
],
),
# natural gas boiler to generate high temperature heat
epl.Boiler(),
# valve to generate low temperature heat from high temperature heat
epl.Valve()
]
site = epl.Site(
assets=assets,
electricity_prices=[100, 50, 200, -100, 0],
high_temperature_load_mwh=[105, 110, 120, 110, 105],
low_temperature_load_mwh=[105, 110, 120, 110, 105]
)
simulation = site.optimize()
```
## Documentation
[See more asset types & use cases in the documentation](https://energypylinear.adgefficiency.com/latest).
## Test
```shell
$ make test
```
Raw data
{
"_id": null,
"home_page": null,
"name": "energypylinear",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.13,>=3.10",
"maintainer_email": null,
"keywords": null,
"author": "Adam Green",
"author_email": "adam.green@adgefficiency.com",
"download_url": "https://files.pythonhosted.org/packages/f0/52/ed388ec4541f36d1d7896e64be1c21d81efeaa2eb331ab0890a86498f4e6/energypylinear-1.4.0.tar.gz",
"platform": null,
"description": "# energy-py-linear\n\n<img src=\"./static/coverage.svg\"> [](https://mypy-lang.org/)\n\n---\n\nDocumentation: [energypylinear.adgefficiency.com](https://energypylinear.adgefficiency.com/latest)\n\n---\n\nA Python library for optimizing energy assets with mixed-integer linear programming:\n\n- electric batteries,\n- combined heat & power (CHP) generators,\n- electric vehicle smart charging,\n- heat pumps,\n- renewable (wind & solar) generators.\n\nAssets & sites can be optimized to either maximize profit or minimize carbon emissions, or a user defined custom objective function.\n\nEnergy balances are performed on electricity, high, and low temperature heat.\n\n## Setup\n\nRequires Python 3.10+:\n\n```shell-session\n$ pip install energypylinear\n```\n\n## Quick Start\n\n### Asset API\n\nThe asset API allows optimizing a single asset at once:\n\n```python\nimport energypylinear as epl\n\n# 2.0 MW, 4.0 MWh battery\nasset = epl.Battery(\n power_mw=2,\n capacity_mwh=4,\n efficiency_pct=0.9,\n electricity_prices=[100.0, 50, 200, -100, 0, 200, 100, -100],\n export_electricity_prices=40\n)\n\nsimulation = asset.optimize()\n```\n\n### Site API\n\nThe site API allows optimizing multiple assets together:\n\n```python\nimport energypylinear as epl\n\nassets = [\n # 2.0 MW, 4.0 MWh battery\n epl.Battery(\n power_mw=2.0,\n capacity_mwh=4.0\n ),\n # 30 MW open cycle generator\n epl.CHP(\n electric_power_max_mw=100,\n electric_power_min_mw=30,\n electric_efficiency_pct=0.4\n ),\n # 2 EV chargers & 4 charge events\n epl.EVs(\n chargers_power_mw=[100, 100],\n charge_events_capacity_mwh=[50, 100, 30, 40],\n charge_events=[\n [1, 0, 0, 0, 0],\n [0, 1, 1, 1, 0],\n [0, 0, 0, 1, 1],\n [0, 1, 0, 0, 0],\n ],\n ),\n # natural gas boiler to generate high temperature heat\n epl.Boiler(),\n # valve to generate low temperature heat from high temperature heat\n epl.Valve()\n]\n\nsite = epl.Site(\n assets=assets,\n electricity_prices=[100, 50, 200, -100, 0],\n high_temperature_load_mwh=[105, 110, 120, 110, 105],\n low_temperature_load_mwh=[105, 110, 120, 110, 105]\n)\n\nsimulation = site.optimize()\n```\n\n## Documentation\n\n[See more asset types & use cases in the documentation](https://energypylinear.adgefficiency.com/latest).\n\n## Test\n\n```shell\n$ make test\n```\n",
"bugtrack_url": null,
"license": "GNU GPLv3",
"summary": "Optimizing energy assets with mixed-integer linear programming.",
"version": "1.4.0",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c08427b8c437613c6088394e116bd4289f50679e873c72556e314e76b43021b9",
"md5": "5d7653773b20e72d18e73f91379f60cf",
"sha256": "65650e1f5ae83f62b8d481dde51c5244c9fca428492cffd657cb6aa8367bc03b"
},
"downloads": -1,
"filename": "energypylinear-1.4.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5d7653773b20e72d18e73f91379f60cf",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.13,>=3.10",
"size": 66531,
"upload_time": "2024-06-22T02:31:16",
"upload_time_iso_8601": "2024-06-22T02:31:16.194560Z",
"url": "https://files.pythonhosted.org/packages/c0/84/27b8c437613c6088394e116bd4289f50679e873c72556e314e76b43021b9/energypylinear-1.4.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f052ed388ec4541f36d1d7896e64be1c21d81efeaa2eb331ab0890a86498f4e6",
"md5": "6bd69a564cb09508840d4f397b4fb2f9",
"sha256": "b817259dec07b06091dd03b7ad28617fe4beb718fa693e9d8d3dd55ebd4f6841"
},
"downloads": -1,
"filename": "energypylinear-1.4.0.tar.gz",
"has_sig": false,
"md5_digest": "6bd69a564cb09508840d4f397b4fb2f9",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.13,>=3.10",
"size": 51148,
"upload_time": "2024-06-22T02:31:18",
"upload_time_iso_8601": "2024-06-22T02:31:18.031262Z",
"url": "https://files.pythonhosted.org/packages/f0/52/ed388ec4541f36d1d7896e64be1c21d81efeaa2eb331ab0890a86498f4e6/energypylinear-1.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-06-22 02:31:18",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "energypylinear"
}