# ENKIE - The ENzyme KInetics Estimator
[![Documentation Status](https://readthedocs.org/projects/enkie/badge/?version=latest)](https://enkie.readthedocs.io/en/latest/?badge=latest)
[![PyPI version](https://badge.fury.io/py/enkie.svg)](https://badge.fury.io/py/enkie)
ENKIE is a python package for the prediction of kinetic parameter values and
uncertainties in metabolic networks. The package uses Bayesian Multilevel Models to
predict values and uncertainties from reaction, protein and metabolite identifiers. The
predictions are then combined with standard free energy estimates to ensure
thermodynamic consistency.
## Installation
ENKIE is available as a Python package on the [Python Package
Index](https://pypi.org/project/enkie/), see the
[documentation](https://enkie.readthedocs.io/en/latest/getting_started.html)
for the installation instructions.
## Cite us
If you use ENKIE in a scientific publication, please cite our paper:
Gollub, M.G., Backes, T., Kaltenbach, H.M., Stelling, J., 2023. "ENKIE: A package for
predicting enzyme kinetic parameter values and their uncertainties". *Bioinformatics*. -
[DOI](https://doi.org/10.1093/bioinformatics/btae652)
Raw data
{
"_id": null,
"home_page": null,
"name": "enkie",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "enzyme, kinetics, catalytic rate, affinity, thermodynamics, estimation, metabolism, metabolic networks",
"author": null,
"author_email": "Mattia Gollub <mattia.gollub@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/03/d8/62473147927c2c8bfa31e529976bb8fa8923e8a8e3cb91d6ae9b47f7aa6b/enkie-0.1.3.tar.gz",
"platform": null,
"description": "# ENKIE - The ENzyme KInetics Estimator\n[![Documentation Status](https://readthedocs.org/projects/enkie/badge/?version=latest)](https://enkie.readthedocs.io/en/latest/?badge=latest)\n[![PyPI version](https://badge.fury.io/py/enkie.svg)](https://badge.fury.io/py/enkie)\n\nENKIE is a python package for the prediction of kinetic parameter values and\nuncertainties in metabolic networks. The package uses Bayesian Multilevel Models to\npredict values and uncertainties from reaction, protein and metabolite identifiers. The\npredictions are then combined with standard free energy estimates to ensure\nthermodynamic consistency.\n\n## Installation\n\nENKIE is available as a Python package on the [Python Package\nIndex](https://pypi.org/project/enkie/), see the\n[documentation](https://enkie.readthedocs.io/en/latest/getting_started.html)\nfor the installation instructions.\n\n## Cite us\n\nIf you use ENKIE in a scientific publication, please cite our paper: \n\nGollub, M.G., Backes, T., Kaltenbach, H.M., Stelling, J., 2023. \"ENKIE: A package for\npredicting enzyme kinetic parameter values and their uncertainties\". *Bioinformatics*. -\n[DOI](https://doi.org/10.1093/bioinformatics/btae652)\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "ENKIE - The ENzyme KInetics Estimator",
"version": "0.1.3",
"project_urls": {
"documentation": "https://enkie.readthedocs.io/en/latest/",
"repository": "https://gitlab.com/csb.ethz/enkie"
},
"split_keywords": [
"enzyme",
" kinetics",
" catalytic rate",
" affinity",
" thermodynamics",
" estimation",
" metabolism",
" metabolic networks"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d9614818574946d3ea1448fbf14d1895537ab4978d653e1b11d3a7f134abf460",
"md5": "6f66ca5a8465b938f960d6d3e6695833",
"sha256": "54ee023fab45d72308b06d677cdb21d957597046a1f9fdaaaa0d29f4eef896dd"
},
"downloads": -1,
"filename": "enkie-0.1.3-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "6f66ca5a8465b938f960d6d3e6695833",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": ">=3.8",
"size": 84159,
"upload_time": "2024-11-11T07:04:21",
"upload_time_iso_8601": "2024-11-11T07:04:21.611958Z",
"url": "https://files.pythonhosted.org/packages/d9/61/4818574946d3ea1448fbf14d1895537ab4978d653e1b11d3a7f134abf460/enkie-0.1.3-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "03d862473147927c2c8bfa31e529976bb8fa8923e8a8e3cb91d6ae9b47f7aa6b",
"md5": "63b9a99c808fec4c85340b134c19cd65",
"sha256": "09f29b7f63c6a0bc0af2182d0d33129cdf7c0442e02b853b3a098b7b26f0d7b4"
},
"downloads": -1,
"filename": "enkie-0.1.3.tar.gz",
"has_sig": false,
"md5_digest": "63b9a99c808fec4c85340b134c19cd65",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 59231,
"upload_time": "2024-11-11T07:04:23",
"upload_time_iso_8601": "2024-11-11T07:04:23.760552Z",
"url": "https://files.pythonhosted.org/packages/03/d8/62473147927c2c8bfa31e529976bb8fa8923e8a8e3cb91d6ae9b47f7aa6b/enkie-0.1.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-11 07:04:23",
"github": false,
"gitlab": true,
"bitbucket": false,
"codeberg": false,
"gitlab_user": "csb.ethz",
"gitlab_project": "enkie",
"lcname": "enkie"
}