ennemi


Nameennemi JSON
Version 1.5.0 PyPI version JSON
download
home_pagehttps://polsys.github.io/ennemi/
SummaryNon-linear correlation detection with mutual information
upload_time2024-11-13 10:35:00
maintainerNone
docs_urlNone
authorPetri Laarne
requires_python~=3.11
licenseMIT
keywords information-theory entropy mutual-information data-analysis scientific
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            This package performs non-linear correlation analysis with mutual information (MI).
MI is an information-theoretical measure of dependency between two variables.
The package is designed for practical data analysis
with no theoretical background required.

**Features:**
- Non-linear correlation detection:
  - Mutual information between two variables, continous or discrete
  - Conditional MI with arbitrary-dimensional conditioning variables
  - Quick overview of many-variable datasets with pairwise MI estimation
- Practical data analysis:
  - Interfaces for evaluating multiple variable pairs and time lags with one call
  - Integrated with `pandas` data frames (optional)
  - Optimized and automatically parallelized estimation
  - Algorithms verified to work, so that you can focus on your data

This package depends only on NumPy and SciPy;
Pandas (2.x or newer) is suggested for more enjoyable data analysis.
Recent versions of NumPy 1.x and 2.x are supported.
Python 3.11+ on the latest macOS, Ubuntu and Windows versions
is officially supported.
Older `ennemi` versions have generally identical behavior if you need to run on older Python.

For more information on theoretical background and usage, please see the
[documentation](https://polsys.github.io/ennemi).
If you encounter any problems or have suggestions, please file an issue!

---

This package was initially developed at
[Institute for Atmospheric and Earth System Research (INAR)](https://www.helsinki.fi/en/inar-institute-for-atmospheric-and-earth-system-research),
University of Helsinki.

            

Raw data

            {
    "_id": null,
    "home_page": "https://polsys.github.io/ennemi/",
    "name": "ennemi",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "~=3.11",
    "maintainer_email": null,
    "keywords": "information-theory entropy mutual-information data-analysis scientific",
    "author": "Petri Laarne",
    "author_email": "petri.laarne@helsinki.fi",
    "download_url": "https://files.pythonhosted.org/packages/2c/47/1b87f7391137a82f6f188bdbebbf4f7b3bd004a944d7cd201cff79e095ec/ennemi-1.5.0.tar.gz",
    "platform": null,
    "description": "This package performs non-linear correlation analysis with mutual information (MI).\nMI is an information-theoretical measure of dependency between two variables.\nThe package is designed for practical data analysis\nwith no theoretical background required.\n\n**Features:**\n- Non-linear correlation detection:\n  - Mutual information between two variables, continous or discrete\n  - Conditional MI with arbitrary-dimensional conditioning variables\n  - Quick overview of many-variable datasets with pairwise MI estimation\n- Practical data analysis:\n  - Interfaces for evaluating multiple variable pairs and time lags with one call\n  - Integrated with `pandas` data frames (optional)\n  - Optimized and automatically parallelized estimation\n  - Algorithms verified to work, so that you can focus on your data\n\nThis package depends only on NumPy and SciPy;\nPandas (2.x or newer) is suggested for more enjoyable data analysis.\nRecent versions of NumPy 1.x and 2.x are supported.\nPython 3.11+ on the latest macOS, Ubuntu and Windows versions\nis officially supported.\nOlder `ennemi` versions have generally identical behavior if you need to run on older Python.\n\nFor more information on theoretical background and usage, please see the\n[documentation](https://polsys.github.io/ennemi).\nIf you encounter any problems or have suggestions, please file an issue!\n\n---\n\nThis package was initially developed at\n[Institute for Atmospheric and Earth System Research (INAR)](https://www.helsinki.fi/en/inar-institute-for-atmospheric-and-earth-system-research),\nUniversity of Helsinki.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Non-linear correlation detection with mutual information",
    "version": "1.5.0",
    "project_urls": {
        "Documentation": "https://polsys.github.io/ennemi/",
        "Homepage": "https://polsys.github.io/ennemi/",
        "Issues": "https://github.com/polsys/ennemi/issues",
        "Source": "https://github.com/polsys/ennemi/",
        "Zenodo": "https://doi.org/10.5281/zenodo.3834018"
    },
    "split_keywords": [
        "information-theory",
        "entropy",
        "mutual-information",
        "data-analysis",
        "scientific"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5031a3ca46b8f940b908e6738a61a15a4cfe538b581da71074d88310d977feca",
                "md5": "cc5ee5f91bc51a9b7c19f02d6d8f21aa",
                "sha256": "a1ac48045da817d73487b4db98d3f64431b33251a8feb688559342df0f128683"
            },
            "downloads": -1,
            "filename": "ennemi-1.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "cc5ee5f91bc51a9b7c19f02d6d8f21aa",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "~=3.11",
            "size": 17006,
            "upload_time": "2024-11-13T10:34:58",
            "upload_time_iso_8601": "2024-11-13T10:34:58.724221Z",
            "url": "https://files.pythonhosted.org/packages/50/31/a3ca46b8f940b908e6738a61a15a4cfe538b581da71074d88310d977feca/ennemi-1.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2c471b87f7391137a82f6f188bdbebbf4f7b3bd004a944d7cd201cff79e095ec",
                "md5": "399149a2ba802ef71606f18e6f36600a",
                "sha256": "15269c2451976f9d6af91116f63d99bbbd6c8632f78f8417bdac5c7e0fc241fd"
            },
            "downloads": -1,
            "filename": "ennemi-1.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "399149a2ba802ef71606f18e6f36600a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "~=3.11",
            "size": 19105,
            "upload_time": "2024-11-13T10:35:00",
            "upload_time_iso_8601": "2024-11-13T10:35:00.581217Z",
            "url": "https://files.pythonhosted.org/packages/2c/47/1b87f7391137a82f6f188bdbebbf4f7b3bd004a944d7cd201cff79e095ec/ennemi-1.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-13 10:35:00",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "polsys",
    "github_project": "ennemi",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "ennemi"
}
        
Elapsed time: 0.35171s