enrichmcp


Nameenrichmcp JSON
Version 0.4.6 PyPI version JSON
download
home_pageNone
SummaryTransform Your Data Model into an MCP API
upload_time2025-07-10 10:20:41
maintainerNone
docs_urlNone
authorNone
requires_python>=3.11
licenseNone
keywords mcp ai agents llm model-context-protocol pydantic api data-model orm agentic enrichment
VCS
bugtrack_url
requirements pydantic mcp-python typing-extensions
Travis-CI No Travis.
coveralls test coverage
            # EnrichMCP

**The ORM for AI Agents - Turn your data model into a semantic MCP layer**

[![CI](https://github.com/featureform/enrichmcp/actions/workflows/ci.yml/badge.svg)](https://github.com/featureform/enrichmcp/actions/workflows/ci.yml)
[![Coverage](https://codecov.io/gh/featureform/enrichmcp/branch/main/graph/badge.svg)](https://codecov.io/gh/featureform/enrichmcp)
[![PyPI](https://img.shields.io/pypi/v/enrichmcp.svg)](https://pypi.org/project/enrichmcp/)
[![Python 3.11+](https://img.shields.io/badge/python-3.11+-blue.svg)](https://www.python.org/downloads/)
[![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/featureform/enrichmcp/blob/main/LICENSE)
[![Docs](https://img.shields.io/badge/docs-website-blue.svg)](https://featureform.github.io/enrichmcp)

EnrichMCP is a Python framework that helps AI agents understand and navigate your data. Built on MCP (Model Context Protocol), it adds a semantic layer that turns your data model into typed, discoverable tools - like an ORM for AI.

## What is EnrichMCP?

Think of it as SQLAlchemy for AI agents. EnrichMCP automatically:

- **Generates typed tools** from your data models
- **Handles relationships** between entities (users → orders → products)
- **Provides schema discovery** so AI agents understand your data structure
- **Validates all inputs/outputs** with Pydantic models
- **Works with any backend** - databases, APIs, or custom logic

## Installation

```bash
pip install enrichmcp

# With SQLAlchemy support
pip install enrichmcp[sqlalchemy]
```

## Show Me Code

### Option 1: I Have SQLAlchemy Models (30 seconds)

Transform your existing SQLAlchemy models into an AI-navigable API:


```python
from enrichmcp import EnrichMCP
from enrichmcp.sqlalchemy import include_sqlalchemy_models, sqlalchemy_lifespan, EnrichSQLAlchemyMixin
from sqlalchemy import ForeignKey
from sqlalchemy.ext.asyncio import create_async_engine
from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column, relationship

engine = create_async_engine("postgresql+asyncpg://user:pass@localhost/db")

# Add the mixin to your declarative base
class Base(DeclarativeBase, EnrichSQLAlchemyMixin):
    pass

class User(Base):
    """User account."""

    __tablename__ = "users"

    id: Mapped[int] = mapped_column(primary_key=True, info={"description": "Unique user ID"})
    email: Mapped[str] = mapped_column(unique=True, info={"description": "Email address"})
    status: Mapped[str] = mapped_column(default="active", info={"description": "Account status"})
    orders: Mapped[list["Order"]] = relationship(back_populates="user", info={"description": "All orders for this user"})

class Order(Base):
    """Customer order."""

    __tablename__ = "orders"

    id: Mapped[int] = mapped_column(primary_key=True, info={"description": "Order ID"})
    user_id: Mapped[int] = mapped_column(ForeignKey("users.id"), info={"description": "Owner user ID"})
    total: Mapped[float] = mapped_column(info={"description": "Order total"})
    user: Mapped[User] = relationship(back_populates="orders", info={"description": "User who placed the order"})

# That's it! Create your MCP app
app = EnrichMCP(
    "E-commerce Data",
    "API generated from SQLAlchemy models",
    lifespan=sqlalchemy_lifespan(Base, engine, cleanup_db_file=True),
)
include_sqlalchemy_models(app, Base)

if __name__ == "__main__":
    app.run()
```
AI agents can now:
- `explore_data_model()` - understand your entire schema
- `list_users(status='active')` - query with filters
- `get_user(id=123)` - fetch specific records
- Navigate relationships: `user.orders` → `order.user`

### Option 2: I Have REST APIs (2 minutes)

Wrap your existing APIs with semantic understanding:

```python
from typing import Literal
from enrichmcp import EnrichMCP, EnrichModel, Relationship
from pydantic import Field
import httpx

app = EnrichMCP("API Gateway", "Wrapper around existing REST APIs")
http = httpx.AsyncClient(base_url="https://api.example.com")

@app.entity
class Customer(EnrichModel):
    """Customer in our CRM system."""

    id: int = Field(description="Unique customer ID")
    email: str = Field(description="Primary contact email")
    tier: Literal["free", "pro", "enterprise"] = Field(
        description="Subscription tier"
    )

    # Define navigable relationships
    orders: list["Order"] = Relationship(description="Customer's purchase history")

@app.entity
class Order(EnrichModel):
    """Customer order from our e-commerce platform."""

    id: int = Field(description="Order ID")
    customer_id: int = Field(description="Associated customer")
    total: float = Field(description="Order total in USD")
    status: Literal["pending", "shipped", "delivered"] = Field(
        description="Order status"
    )

    customer: Customer = Relationship(description="Customer who placed this order")

# Define how to fetch data
@app.retrieve
async def get_customer(customer_id: int) -> Customer:
    """Fetch customer from CRM API."""
    response = await http.get(f"/api/customers/{customer_id}")
    return Customer(**response.json())

# Define relationship resolvers
@Customer.orders.resolver
async def get_customer_orders(customer_id: int) -> list[Order]:
    """Fetch orders for a customer."""
    response = await http.get(f"/api/customers/{customer_id}/orders")
    return [Order(**order) for order in response.json()]

@Order.customer.resolver
async def get_order_customer(order_id: int) -> Customer:
    """Fetch the customer for an order."""
    response = await http.get(f"/api/orders/{order_id}/customer")
    return Customer(**response.json())

app.run()
```

### Option 3: I Want Full Control (5 minutes)

Build a complete data layer with custom logic:

```python
from enrichmcp import EnrichMCP, EnrichModel, Relationship, EnrichContext
from datetime import datetime
from decimal import Decimal
from pydantic import Field

app = EnrichMCP("Analytics Platform", "Custom analytics API")

db = ...  # your database connection

@app.entity
class User(EnrichModel):
    """User with computed analytics fields."""

    id: int = Field(description="User ID")
    email: str = Field(description="Contact email")
    created_at: datetime = Field(description="Registration date")

    # Computed fields
    lifetime_value: Decimal = Field(description="Total revenue from user")
    churn_risk: float = Field(description="ML-predicted churn probability 0-1")

    # Relationships
    orders: list["Order"] = Relationship(description="Purchase history")
    segments: list["Segment"] = Relationship(description="Marketing segments")

@app.entity
class Segment(EnrichModel):
    """Dynamic user segment for marketing."""

    name: str = Field(description="Segment name")
    criteria: dict = Field(description="Segment criteria")
    users: list[User] = Relationship(description="Users in this segment")


@app.entity
class Order(EnrichModel):
    """Simplified order record."""

    id: int = Field(description="Order ID")
    user_id: int = Field(description="Owner user ID")
    total: Decimal = Field(description="Order total")

@User.orders.resolver
async def list_user_orders(user_id: int) -> list[Order]:
    """Fetch orders for a user."""
    rows = await db.query(
        "SELECT * FROM orders WHERE user_id = ? ORDER BY id DESC",
        user_id,
    )
    return [Order(**row) for row in rows]

@User.segments.resolver
async def list_user_segments(user_id: int) -> list[Segment]:
    """Fetch segments that include the user."""
    rows = await db.query(
        "SELECT s.* FROM segments s JOIN user_segments us ON s.name = us.segment_name WHERE us.user_id = ?",
        user_id,
    )
    return [Segment(**row) for row in rows]

@Segment.users.resolver
async def list_segment_users(name: str) -> list[User]:
    """List users in a segment."""
    rows = await db.query(
        "SELECT u.* FROM users u JOIN user_segments us ON u.id = us.user_id WHERE us.segment_name = ?",
        name,
    )
    return [User(**row) for row in rows]

# Complex resource with business logic
@app.retrieve
async def find_high_value_at_risk_users(
    lifetime_value_min: Decimal = 1000,
    churn_risk_min: float = 0.7,
    limit: int = 100
) -> list[User]:
    """Find valuable customers likely to churn."""
    users = await db.query(
        """
        SELECT * FROM users
        WHERE lifetime_value >= ? AND churn_risk >= ?
        ORDER BY lifetime_value DESC
        LIMIT ?
        """,
        lifetime_value_min, churn_risk_min, limit
    )
    return [User(**u) for u in users]

# Async computed field resolver
@User.lifetime_value.resolver
async def calculate_lifetime_value(user_id: int) -> Decimal:
    """Calculate total revenue from user's orders."""
    total = await db.query_single(
        "SELECT SUM(total) FROM orders WHERE user_id = ?",
        user_id
    )
    return Decimal(str(total or 0))

# ML-powered field
@User.churn_risk.resolver
async def predict_churn_risk(user_id: int, context: EnrichContext) -> float:
    """Run churn prediction model."""
    features = await gather_user_features(user_id)
    model = context.get("ml_models")["churn"]
    return float(model.predict_proba(features)[0][1])

app.run()
```

## Key Features

### 🔍 Automatic Schema Discovery

AI agents explore your entire data model with one call:

```python
schema = await explore_data_model()
# Returns complete schema with entities, fields, types, and relationships
```

### 🔗 Relationship Navigation

Define relationships once, AI agents traverse naturally:

```python
# AI can navigate: user → orders → products → categories
user = await get_user(123)
orders = await user.orders()  # Automatic resolver
products = await orders[0].products()
```

### 🛡️ Type Safety & Validation

Full Pydantic validation on every interaction:

```python
@app.entity
class Order(EnrichModel):
    total: float = Field(ge=0, description="Must be positive")
    email: EmailStr = Field(description="Customer email")
    status: Literal["pending", "shipped", "delivered"]
```
`describe_model()` will list these allowed values so agents know the valid options.

### ✏️ Mutability & CRUD

Fields are immutable by default. Mark them as mutable and use
auto-generated patch models for updates:

```python
@app.entity
class Customer(EnrichModel):
    id: int = Field(description="ID")
    email: str = Field(json_schema_extra={"mutable": True}, description="Email")

@app.create
async def create_customer(email: str) -> Customer:
    ...

@app.update
async def update_customer(cid: int, patch: Customer.PatchModel) -> Customer:
    ...

@app.delete
async def delete_customer(cid: int) -> bool:
    ...
```

### 📄 Pagination Built-in

Handle large datasets elegantly:

```python
from enrichmcp import PageResult

@app.retrieve
async def list_orders(
    page: int = 1,
    page_size: int = 50
) -> PageResult[Order]:
    orders, total = await db.get_orders_page(page, page_size)
    return PageResult.create(
        items=orders,
        page=page,
        page_size=page_size,
        total_items=total
    )
```

See the [Pagination Guide](https://featureform.github.io/enrichmcp/pagination) for more examples.

### 🔐 Context & Authentication

Pass auth, database connections, or any context:

```python
from pydantic import Field
from enrichmcp import EnrichModel

class UserProfile(EnrichModel):
    """User profile information."""

    user_id: int = Field(description="User ID")
    bio: str | None = Field(default=None, description="Short bio")

@app.retrieve
async def get_user_profile(user_id: int, context: EnrichContext) -> UserProfile:
    # Access context provided by MCP client
    auth_user = context.get("authenticated_user_id")
    if auth_user != user_id:
        raise PermissionError("Can only access your own profile")
    return await db.get_profile(user_id)
```

### ⚡ Request Caching

Reduce API overhead by storing results in a per-request, per-user, or global cache:

```python

@app.retrieve
async def get_customer(cid: int, ctx: EnrichContext) -> Customer:
    async def fetch() -> Customer:
        return await db.get_customer(cid)

    return await ctx.cache.get_or_set(f"customer:{cid}", fetch)
```

### 🧭 Parameter Hints

Provide examples and metadata for tool parameters using `EnrichParameter`:

```python
from enrichmcp import EnrichParameter

@app.retrieve
async def greet_user(name: str = EnrichParameter(description="user name", examples=["bob"])) -> str:
    return f"Hello {name}"
```

Tool descriptions will include the parameter type, description, and examples.

### 🌐 HTTP & SSE Support

Serve your API over standard output (default), SSE, or HTTP:

```python
app.run()  # stdio default
app.run(transport="streamable-http")
```

## Why EnrichMCP?

EnrichMCP adds three critical layers on top of MCP:

1. **Semantic Layer** - AI agents understand what your data means, not just its structure
2. **Data Layer** - Type-safe models with validation and relationships
3. **Control Layer** - Authentication, pagination, and business logic

The result: AI agents can work with your data as naturally as a developer using an ORM.

## Examples

Check out the [examples directory](examples/README.md):

- [hello_world](examples/hello_world) - The smallest possible EnrichMCP app
- [hello_world_http](examples/hello_world_http) - HTTP example using streamable HTTP
- [shop_api](examples/shop_api) - In-memory shop API with pagination and filters
- [shop_api_sqlite](examples/shop_api_sqlite) - SQLite-backed version
- [shop_api_gateway](examples/shop_api_gateway) - EnrichMCP as a gateway in front of FastAPI
- [sqlalchemy_shop](examples/sqlalchemy_shop) - Auto-generated API from SQLAlchemy models
- [mutable_crud](examples/mutable_crud) - Demonstrates mutable fields and CRUD decorators
- [caching](examples/caching) - Demonstrates ContextCache usage
- [basic_memory](examples/basic_memory) - Simple note-taking API using FileMemoryStore
- [openai_chat_agent](examples/openai_chat_agent) - Interactive chat client for MCP examples

## Documentation

- 📖 [Full Documentation](https://featureform.github.io/enrichmcp)
- 🚀 [Getting Started Guide](https://featureform.github.io/enrichmcp/getting-started)
- 🔧 [API Reference](https://featureform.github.io/enrichmcp/api)

## Contributing

We welcome contributions! See [CONTRIBUTING.md](CONTRIBUTING.md) for details.

## Development Setup

The repository requires **Python 3.11** or newer. The Makefile includes
commands to create a virtual environment and run the tests:

```bash
make setup            # create .venv and install dependencies
source .venv/bin/activate
make test             # run the test suite
```

This installs all development extras and pre-commit hooks so commands like
`make lint` or `make docs` work right away.

## License

Apache 2.0 - See [LICENSE](LICENSE)

---

Built by [Featureform](https://featureform.com) • [MCP Protocol](https://modelcontextprotocol.io)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "enrichmcp",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": "Featureform Team <team@featureform.com>",
    "keywords": "mcp, ai, agents, llm, model-context-protocol, pydantic, api, data-model, orm, agentic, enrichment",
    "author": null,
    "author_email": "Simba Khadder <simba@featureform.com>",
    "download_url": "https://files.pythonhosted.org/packages/ee/1f/681ed55003f8ce2064931ff05d6c5c2e85dcda6d4dda3dcb34d92c14a9b8/enrichmcp-0.4.6.tar.gz",
    "platform": null,
    "description": "# EnrichMCP\n\n**The ORM for AI Agents - Turn your data model into a semantic MCP layer**\n\n[![CI](https://github.com/featureform/enrichmcp/actions/workflows/ci.yml/badge.svg)](https://github.com/featureform/enrichmcp/actions/workflows/ci.yml)\n[![Coverage](https://codecov.io/gh/featureform/enrichmcp/branch/main/graph/badge.svg)](https://codecov.io/gh/featureform/enrichmcp)\n[![PyPI](https://img.shields.io/pypi/v/enrichmcp.svg)](https://pypi.org/project/enrichmcp/)\n[![Python 3.11+](https://img.shields.io/badge/python-3.11+-blue.svg)](https://www.python.org/downloads/)\n[![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/featureform/enrichmcp/blob/main/LICENSE)\n[![Docs](https://img.shields.io/badge/docs-website-blue.svg)](https://featureform.github.io/enrichmcp)\n\nEnrichMCP is a Python framework that helps AI agents understand and navigate your data. Built on MCP (Model Context Protocol), it adds a semantic layer that turns your data model into typed, discoverable tools - like an ORM for AI.\n\n## What is EnrichMCP?\n\nThink of it as SQLAlchemy for AI agents. EnrichMCP automatically:\n\n- **Generates typed tools** from your data models\n- **Handles relationships** between entities (users \u2192 orders \u2192 products)\n- **Provides schema discovery** so AI agents understand your data structure\n- **Validates all inputs/outputs** with Pydantic models\n- **Works with any backend** - databases, APIs, or custom logic\n\n## Installation\n\n```bash\npip install enrichmcp\n\n# With SQLAlchemy support\npip install enrichmcp[sqlalchemy]\n```\n\n## Show Me Code\n\n### Option 1: I Have SQLAlchemy Models (30 seconds)\n\nTransform your existing SQLAlchemy models into an AI-navigable API:\n\n\n```python\nfrom enrichmcp import EnrichMCP\nfrom enrichmcp.sqlalchemy import include_sqlalchemy_models, sqlalchemy_lifespan, EnrichSQLAlchemyMixin\nfrom sqlalchemy import ForeignKey\nfrom sqlalchemy.ext.asyncio import create_async_engine\nfrom sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column, relationship\n\nengine = create_async_engine(\"postgresql+asyncpg://user:pass@localhost/db\")\n\n# Add the mixin to your declarative base\nclass Base(DeclarativeBase, EnrichSQLAlchemyMixin):\n    pass\n\nclass User(Base):\n    \"\"\"User account.\"\"\"\n\n    __tablename__ = \"users\"\n\n    id: Mapped[int] = mapped_column(primary_key=True, info={\"description\": \"Unique user ID\"})\n    email: Mapped[str] = mapped_column(unique=True, info={\"description\": \"Email address\"})\n    status: Mapped[str] = mapped_column(default=\"active\", info={\"description\": \"Account status\"})\n    orders: Mapped[list[\"Order\"]] = relationship(back_populates=\"user\", info={\"description\": \"All orders for this user\"})\n\nclass Order(Base):\n    \"\"\"Customer order.\"\"\"\n\n    __tablename__ = \"orders\"\n\n    id: Mapped[int] = mapped_column(primary_key=True, info={\"description\": \"Order ID\"})\n    user_id: Mapped[int] = mapped_column(ForeignKey(\"users.id\"), info={\"description\": \"Owner user ID\"})\n    total: Mapped[float] = mapped_column(info={\"description\": \"Order total\"})\n    user: Mapped[User] = relationship(back_populates=\"orders\", info={\"description\": \"User who placed the order\"})\n\n# That's it! Create your MCP app\napp = EnrichMCP(\n    \"E-commerce Data\",\n    \"API generated from SQLAlchemy models\",\n    lifespan=sqlalchemy_lifespan(Base, engine, cleanup_db_file=True),\n)\ninclude_sqlalchemy_models(app, Base)\n\nif __name__ == \"__main__\":\n    app.run()\n```\nAI agents can now:\n- `explore_data_model()` - understand your entire schema\n- `list_users(status='active')` - query with filters\n- `get_user(id=123)` - fetch specific records\n- Navigate relationships: `user.orders` \u2192 `order.user`\n\n### Option 2: I Have REST APIs (2 minutes)\n\nWrap your existing APIs with semantic understanding:\n\n```python\nfrom typing import Literal\nfrom enrichmcp import EnrichMCP, EnrichModel, Relationship\nfrom pydantic import Field\nimport httpx\n\napp = EnrichMCP(\"API Gateway\", \"Wrapper around existing REST APIs\")\nhttp = httpx.AsyncClient(base_url=\"https://api.example.com\")\n\n@app.entity\nclass Customer(EnrichModel):\n    \"\"\"Customer in our CRM system.\"\"\"\n\n    id: int = Field(description=\"Unique customer ID\")\n    email: str = Field(description=\"Primary contact email\")\n    tier: Literal[\"free\", \"pro\", \"enterprise\"] = Field(\n        description=\"Subscription tier\"\n    )\n\n    # Define navigable relationships\n    orders: list[\"Order\"] = Relationship(description=\"Customer's purchase history\")\n\n@app.entity\nclass Order(EnrichModel):\n    \"\"\"Customer order from our e-commerce platform.\"\"\"\n\n    id: int = Field(description=\"Order ID\")\n    customer_id: int = Field(description=\"Associated customer\")\n    total: float = Field(description=\"Order total in USD\")\n    status: Literal[\"pending\", \"shipped\", \"delivered\"] = Field(\n        description=\"Order status\"\n    )\n\n    customer: Customer = Relationship(description=\"Customer who placed this order\")\n\n# Define how to fetch data\n@app.retrieve\nasync def get_customer(customer_id: int) -> Customer:\n    \"\"\"Fetch customer from CRM API.\"\"\"\n    response = await http.get(f\"/api/customers/{customer_id}\")\n    return Customer(**response.json())\n\n# Define relationship resolvers\n@Customer.orders.resolver\nasync def get_customer_orders(customer_id: int) -> list[Order]:\n    \"\"\"Fetch orders for a customer.\"\"\"\n    response = await http.get(f\"/api/customers/{customer_id}/orders\")\n    return [Order(**order) for order in response.json()]\n\n@Order.customer.resolver\nasync def get_order_customer(order_id: int) -> Customer:\n    \"\"\"Fetch the customer for an order.\"\"\"\n    response = await http.get(f\"/api/orders/{order_id}/customer\")\n    return Customer(**response.json())\n\napp.run()\n```\n\n### Option 3: I Want Full Control (5 minutes)\n\nBuild a complete data layer with custom logic:\n\n```python\nfrom enrichmcp import EnrichMCP, EnrichModel, Relationship, EnrichContext\nfrom datetime import datetime\nfrom decimal import Decimal\nfrom pydantic import Field\n\napp = EnrichMCP(\"Analytics Platform\", \"Custom analytics API\")\n\ndb = ...  # your database connection\n\n@app.entity\nclass User(EnrichModel):\n    \"\"\"User with computed analytics fields.\"\"\"\n\n    id: int = Field(description=\"User ID\")\n    email: str = Field(description=\"Contact email\")\n    created_at: datetime = Field(description=\"Registration date\")\n\n    # Computed fields\n    lifetime_value: Decimal = Field(description=\"Total revenue from user\")\n    churn_risk: float = Field(description=\"ML-predicted churn probability 0-1\")\n\n    # Relationships\n    orders: list[\"Order\"] = Relationship(description=\"Purchase history\")\n    segments: list[\"Segment\"] = Relationship(description=\"Marketing segments\")\n\n@app.entity\nclass Segment(EnrichModel):\n    \"\"\"Dynamic user segment for marketing.\"\"\"\n\n    name: str = Field(description=\"Segment name\")\n    criteria: dict = Field(description=\"Segment criteria\")\n    users: list[User] = Relationship(description=\"Users in this segment\")\n\n\n@app.entity\nclass Order(EnrichModel):\n    \"\"\"Simplified order record.\"\"\"\n\n    id: int = Field(description=\"Order ID\")\n    user_id: int = Field(description=\"Owner user ID\")\n    total: Decimal = Field(description=\"Order total\")\n\n@User.orders.resolver\nasync def list_user_orders(user_id: int) -> list[Order]:\n    \"\"\"Fetch orders for a user.\"\"\"\n    rows = await db.query(\n        \"SELECT * FROM orders WHERE user_id = ? ORDER BY id DESC\",\n        user_id,\n    )\n    return [Order(**row) for row in rows]\n\n@User.segments.resolver\nasync def list_user_segments(user_id: int) -> list[Segment]:\n    \"\"\"Fetch segments that include the user.\"\"\"\n    rows = await db.query(\n        \"SELECT s.* FROM segments s JOIN user_segments us ON s.name = us.segment_name WHERE us.user_id = ?\",\n        user_id,\n    )\n    return [Segment(**row) for row in rows]\n\n@Segment.users.resolver\nasync def list_segment_users(name: str) -> list[User]:\n    \"\"\"List users in a segment.\"\"\"\n    rows = await db.query(\n        \"SELECT u.* FROM users u JOIN user_segments us ON u.id = us.user_id WHERE us.segment_name = ?\",\n        name,\n    )\n    return [User(**row) for row in rows]\n\n# Complex resource with business logic\n@app.retrieve\nasync def find_high_value_at_risk_users(\n    lifetime_value_min: Decimal = 1000,\n    churn_risk_min: float = 0.7,\n    limit: int = 100\n) -> list[User]:\n    \"\"\"Find valuable customers likely to churn.\"\"\"\n    users = await db.query(\n        \"\"\"\n        SELECT * FROM users\n        WHERE lifetime_value >= ? AND churn_risk >= ?\n        ORDER BY lifetime_value DESC\n        LIMIT ?\n        \"\"\",\n        lifetime_value_min, churn_risk_min, limit\n    )\n    return [User(**u) for u in users]\n\n# Async computed field resolver\n@User.lifetime_value.resolver\nasync def calculate_lifetime_value(user_id: int) -> Decimal:\n    \"\"\"Calculate total revenue from user's orders.\"\"\"\n    total = await db.query_single(\n        \"SELECT SUM(total) FROM orders WHERE user_id = ?\",\n        user_id\n    )\n    return Decimal(str(total or 0))\n\n# ML-powered field\n@User.churn_risk.resolver\nasync def predict_churn_risk(user_id: int, context: EnrichContext) -> float:\n    \"\"\"Run churn prediction model.\"\"\"\n    features = await gather_user_features(user_id)\n    model = context.get(\"ml_models\")[\"churn\"]\n    return float(model.predict_proba(features)[0][1])\n\napp.run()\n```\n\n## Key Features\n\n### \ud83d\udd0d Automatic Schema Discovery\n\nAI agents explore your entire data model with one call:\n\n```python\nschema = await explore_data_model()\n# Returns complete schema with entities, fields, types, and relationships\n```\n\n### \ud83d\udd17 Relationship Navigation\n\nDefine relationships once, AI agents traverse naturally:\n\n```python\n# AI can navigate: user \u2192 orders \u2192 products \u2192 categories\nuser = await get_user(123)\norders = await user.orders()  # Automatic resolver\nproducts = await orders[0].products()\n```\n\n### \ud83d\udee1\ufe0f Type Safety & Validation\n\nFull Pydantic validation on every interaction:\n\n```python\n@app.entity\nclass Order(EnrichModel):\n    total: float = Field(ge=0, description=\"Must be positive\")\n    email: EmailStr = Field(description=\"Customer email\")\n    status: Literal[\"pending\", \"shipped\", \"delivered\"]\n```\n`describe_model()` will list these allowed values so agents know the valid options.\n\n### \u270f\ufe0f Mutability & CRUD\n\nFields are immutable by default. Mark them as mutable and use\nauto-generated patch models for updates:\n\n```python\n@app.entity\nclass Customer(EnrichModel):\n    id: int = Field(description=\"ID\")\n    email: str = Field(json_schema_extra={\"mutable\": True}, description=\"Email\")\n\n@app.create\nasync def create_customer(email: str) -> Customer:\n    ...\n\n@app.update\nasync def update_customer(cid: int, patch: Customer.PatchModel) -> Customer:\n    ...\n\n@app.delete\nasync def delete_customer(cid: int) -> bool:\n    ...\n```\n\n### \ud83d\udcc4 Pagination Built-in\n\nHandle large datasets elegantly:\n\n```python\nfrom enrichmcp import PageResult\n\n@app.retrieve\nasync def list_orders(\n    page: int = 1,\n    page_size: int = 50\n) -> PageResult[Order]:\n    orders, total = await db.get_orders_page(page, page_size)\n    return PageResult.create(\n        items=orders,\n        page=page,\n        page_size=page_size,\n        total_items=total\n    )\n```\n\nSee the [Pagination Guide](https://featureform.github.io/enrichmcp/pagination) for more examples.\n\n### \ud83d\udd10 Context & Authentication\n\nPass auth, database connections, or any context:\n\n```python\nfrom pydantic import Field\nfrom enrichmcp import EnrichModel\n\nclass UserProfile(EnrichModel):\n    \"\"\"User profile information.\"\"\"\n\n    user_id: int = Field(description=\"User ID\")\n    bio: str | None = Field(default=None, description=\"Short bio\")\n\n@app.retrieve\nasync def get_user_profile(user_id: int, context: EnrichContext) -> UserProfile:\n    # Access context provided by MCP client\n    auth_user = context.get(\"authenticated_user_id\")\n    if auth_user != user_id:\n        raise PermissionError(\"Can only access your own profile\")\n    return await db.get_profile(user_id)\n```\n\n### \u26a1 Request Caching\n\nReduce API overhead by storing results in a per-request, per-user, or global cache:\n\n```python\n\n@app.retrieve\nasync def get_customer(cid: int, ctx: EnrichContext) -> Customer:\n    async def fetch() -> Customer:\n        return await db.get_customer(cid)\n\n    return await ctx.cache.get_or_set(f\"customer:{cid}\", fetch)\n```\n\n### \ud83e\udded Parameter Hints\n\nProvide examples and metadata for tool parameters using `EnrichParameter`:\n\n```python\nfrom enrichmcp import EnrichParameter\n\n@app.retrieve\nasync def greet_user(name: str = EnrichParameter(description=\"user name\", examples=[\"bob\"])) -> str:\n    return f\"Hello {name}\"\n```\n\nTool descriptions will include the parameter type, description, and examples.\n\n### \ud83c\udf10 HTTP & SSE Support\n\nServe your API over standard output (default), SSE, or HTTP:\n\n```python\napp.run()  # stdio default\napp.run(transport=\"streamable-http\")\n```\n\n## Why EnrichMCP?\n\nEnrichMCP adds three critical layers on top of MCP:\n\n1. **Semantic Layer** - AI agents understand what your data means, not just its structure\n2. **Data Layer** - Type-safe models with validation and relationships\n3. **Control Layer** - Authentication, pagination, and business logic\n\nThe result: AI agents can work with your data as naturally as a developer using an ORM.\n\n## Examples\n\nCheck out the [examples directory](examples/README.md):\n\n- [hello_world](examples/hello_world) - The smallest possible EnrichMCP app\n- [hello_world_http](examples/hello_world_http) - HTTP example using streamable HTTP\n- [shop_api](examples/shop_api) - In-memory shop API with pagination and filters\n- [shop_api_sqlite](examples/shop_api_sqlite) - SQLite-backed version\n- [shop_api_gateway](examples/shop_api_gateway) - EnrichMCP as a gateway in front of FastAPI\n- [sqlalchemy_shop](examples/sqlalchemy_shop) - Auto-generated API from SQLAlchemy models\n- [mutable_crud](examples/mutable_crud) - Demonstrates mutable fields and CRUD decorators\n- [caching](examples/caching) - Demonstrates ContextCache usage\n- [basic_memory](examples/basic_memory) - Simple note-taking API using FileMemoryStore\n- [openai_chat_agent](examples/openai_chat_agent) - Interactive chat client for MCP examples\n\n## Documentation\n\n- \ud83d\udcd6 [Full Documentation](https://featureform.github.io/enrichmcp)\n- \ud83d\ude80 [Getting Started Guide](https://featureform.github.io/enrichmcp/getting-started)\n- \ud83d\udd27 [API Reference](https://featureform.github.io/enrichmcp/api)\n\n## Contributing\n\nWe welcome contributions! See [CONTRIBUTING.md](CONTRIBUTING.md) for details.\n\n## Development Setup\n\nThe repository requires **Python&nbsp;3.11** or newer. The Makefile includes\ncommands to create a virtual environment and run the tests:\n\n```bash\nmake setup            # create .venv and install dependencies\nsource .venv/bin/activate\nmake test             # run the test suite\n```\n\nThis installs all development extras and pre-commit hooks so commands like\n`make lint` or `make docs` work right away.\n\n## License\n\nApache 2.0 - See [LICENSE](LICENSE)\n\n---\n\nBuilt by [Featureform](https://featureform.com) \u2022 [MCP Protocol](https://modelcontextprotocol.io)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Transform Your Data Model into an MCP API",
    "version": "0.4.6",
    "project_urls": {
        "Changelog": "https://github.com/featureform/enrichmcp/releases",
        "Discussions": "https://github.com/featureform/enrichmcp/discussions",
        "Documentation": "https://featureform.com/enrichmcp",
        "Homepage": "https://github.com/featureform/enrichmcp",
        "Issues": "https://github.com/featureform/enrichmcp/issues",
        "Repository": "https://github.com/featureform/enrichmcp"
    },
    "split_keywords": [
        "mcp",
        " ai",
        " agents",
        " llm",
        " model-context-protocol",
        " pydantic",
        " api",
        " data-model",
        " orm",
        " agentic",
        " enrichment"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b7c8646a6b6889e19d920f31814aa32a18112ff976441f20fe1627db3ff1d5ed",
                "md5": "2bb392b9f463d61e3fd38a60060ccf21",
                "sha256": "fbaf7fd9de3a6bbd0f3f95568b436fb8842315c311a68340c060de749cb71536"
            },
            "downloads": -1,
            "filename": "enrichmcp-0.4.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2bb392b9f463d61e3fd38a60060ccf21",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 34276,
            "upload_time": "2025-07-10T10:20:40",
            "upload_time_iso_8601": "2025-07-10T10:20:40.555817Z",
            "url": "https://files.pythonhosted.org/packages/b7/c8/646a6b6889e19d920f31814aa32a18112ff976441f20fe1627db3ff1d5ed/enrichmcp-0.4.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ee1f681ed55003f8ce2064931ff05d6c5c2e85dcda6d4dda3dcb34d92c14a9b8",
                "md5": "aebb27aa397a7fe2b4c27ee60f03a2ac",
                "sha256": "df0baf371141b0f8e7f6f8179396787c7d487f5c119ae8b070bd2034f8e4303d"
            },
            "downloads": -1,
            "filename": "enrichmcp-0.4.6.tar.gz",
            "has_sig": false,
            "md5_digest": "aebb27aa397a7fe2b4c27ee60f03a2ac",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 118172,
            "upload_time": "2025-07-10T10:20:41",
            "upload_time_iso_8601": "2025-07-10T10:20:41.941442Z",
            "url": "https://files.pythonhosted.org/packages/ee/1f/681ed55003f8ce2064931ff05d6c5c2e85dcda6d4dda3dcb34d92c14a9b8/enrichmcp-0.4.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-10 10:20:41",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "featureform",
    "github_project": "enrichmcp",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "requirements": [
        {
            "name": "pydantic",
            "specs": [
                [
                    ">=",
                    "2.0.0"
                ],
                [
                    "<",
                    "3.0.0"
                ]
            ]
        },
        {
            "name": "mcp-python",
            "specs": [
                [
                    ">=",
                    "0.1.0"
                ]
            ]
        },
        {
            "name": "typing-extensions",
            "specs": [
                [
                    ">=",
                    "4.5.0"
                ],
                [
                    "<",
                    "5.0.0"
                ]
            ]
        }
    ],
    "lcname": "enrichmcp"
}
        
Elapsed time: 0.42741s